Main Page
About US
Director Message
No. Decision and Establashment Date
vision & mission
Our objectives
Our achievements
Organization Chart
Administration
Executive Board
Administrative Board
Scientific Advisor Committee
Postgraduate Committee
Ethical Committee
Elite Student Program Committee
Administrative Unit
Secretary Unit
Employment Unit
Ordering and Purchasing Unit
IT Unit
Financial Unit
Public Relations and Marketing Unit
Transportation Unit
Researchers
Senior Staff
Research Leaders
Research Staff
Technical Staff Labs
Research Programs
About Research Programs
Biobanking & Biospecimen Research Program
Cancer Genomic Research Program
Functional & Developmental Genomics Research Progr
Genomic Screening Research Program
Neurogenetic Research Program
Pharmacogenomics Research Program
Tissue Culture & Regenerative Medicine Research
Research Service Units
About Research Service Units
Biobanking Unit
Bioimaging Unit
Bioinformatics Unit
Biomedical Engineering Unit
Diagnostic & Genomic Medicine Unit (DGMU)
Cytogenetic Service Unit
Molecular Service Unit
Flowcytometry Unit
Genetic Counselling Unit
High-Throughput Sequencing Unit
Histopathology Unit
Microarray (Affymetrix) Unit
Microarray (Agilent) Unit
Pharmacogenomics & Drug Discovery Unit
Preimplantation Genetic Diagnosis Unit
Proteomics and Metabolomics Unit
Quantitative Genotyping Unit
Teratogenecity & Toxicity Unit
Tissue Culture Unit
Education & Outreach Program
About Education & Outreach Program
Master of Science Program
About the Program
Master Students
Doctor of Philosophy Program
About the Program
Ph.D. Students
Training Program
About Program
Specialized Training Program in Clinical Cyto.
Public Awareness Program
Collaborations
About Collaborations
National Level Collaborations
International Level Collaborations
Quality Management Program
About Quality Management Program
QMP Outline
QMP Aims and Function
Publications
CEGMR Publication List
Submit Publication Permission Request
CEGMR Booklets
CEGMR Newsletter
CEGMR Workshops
Conferences and Seminars
CEGMR Training Programs
Conferences & Workshops
Conferences
Workshops
Seminars and Training Courses
Parteners
Academic Parteners
National
International
Commercial Parteners
National
International
Related Links
Government
Journals
Non-Governmental Organizations
International Organizations
Medical Dictionaries
Search Engines for Researchers
PhotoAlbum
Files
Contact Us
Center map
Site Map
Latest News
Our Events
CEGMR Research
Research
Application for Employment
عربي
English
About
Admission
Academic
Research and Innovations
University Life
E-Services
Search
Center of Excellence In Genomic Medicine Research
Document Details
Document Type
:
Article In Journal
Document Title
:
Alternative Splicing QTLs in European and African Populations.
Alternative Splicing QTLs in European and African Populations.
Document Language
:
English
Abstract
:
With the advent of RNA-sequencing technology, we can detect different types of alternative splicing and determine how DNA variation regulates splicing. However, given the short read lengths used in most population-based RNA-sequencing experiments, quantifying transcripts accurately remains a challenge. Here we present a method, Altrans, for discovery of alternative splicing quantitative trait loci (asQTLs). To assess the performance of Altrans, we compared it to Cufflinks and MISO in simulations and Cufflinks for asQTL discovery. Simulations show that in the presence of unannotated transcripts, Altrans performs better in quantifications than Cufflinks and MISO. We have applied Altrans and Cufflinks to the Geuvadis dataset, which comprises samples from European and African populations, and discovered (FDR = 1%) 1,427 and 166 asQTLs with Altrans and 1,737 and 304 asQTLs with Cufflinks for Europeans and Africans, respectively. We show that, by discovering a set of asQTLs in a smaller subset of European samples and replicating these in the remaining larger subset of Europeans, both methods achieve similar replication levels (95% for both methods). We find many Altrans-specific asQTLs, which replicate to a high degree (93%). This is mainly due to junctions absent from the annotations and hence not tested with Cufflinks. The asQTLs are significantly enriched for biochemically active regions of the genome, functional marks, and variants in splicing regions, highlighting their biological relevance. We present an approach for discovering asQTLs that is a more direct assessment of splicing compared to other methods and is complementary to other transcript quantification methods.
ISSN
:
1537-6605
Journal Name
:
Am J Hum Genet
Volume
:
97
Issue Number
:
4
Publishing Year
:
1436 AH
2015 AD
Article Type
:
Article
Added Date
:
Tuesday, April 26, 2016
Researchers
Researcher Name (Arabic)
Researcher Name (English)
Researcher Type
Dr Grade
Email
Halit Ongen
Ongen, Halit
Investigator
halit.ongen@unige.ch
Emmanouil T. Dermitzakis
Dermitzakis, Emmanouil T.
Researcher
emmanouil.dermitzakis@unige.ch
Files
File Name
Type
Description
38699.pdf
pdf
Back To Researches Page