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Alternative Splicing QTLs in European and African Populations

Halit Ongen1,2,3,* and Emmanouil T. Dermitzakis1,2,3,4,5,*

With the advent of RNA-sequencing technology, we can detect different types of alternative splicing and determine how DNA variation

regulates splicing. However, given the short read lengths used inmost population-based RNA-sequencing experiments, quantifying tran-

scripts accurately remains a challenge. Here we present a method, Altrans, for discovery of alternative splicing quantitative trait loci

(asQTLs). To assess the performance of Altrans, we compared it to Cufflinks andMISO in simulations and Cufflinks for asQTL discovery.

Simulations show that in the presence of unannotated transcripts, Altrans performs better in quantifications than Cufflinks and MISO.

We have applied Altrans and Cufflinks to the Geuvadis dataset, which comprises samples from European and African populations, and

discovered (FDR¼ 1%) 1,427 and 166 asQTLs with Altrans and 1,737 and 304 asQTLs with Cufflinks for Europeans and Africans, respec-

tively. We show that, by discovering a set of asQTLs in a smaller subset of European samples and replicating these in the remaining larger

subset of Europeans, both methods achieve similar replication levels (95% for both methods). We find many Altrans-specific asQTLs,

which replicate to a high degree (93%). This is mainly due to junctions absent from the annotations and hence not tested with Cufflinks.

The asQTLs are significantly enriched for biochemically active regions of the genome, functional marks, and variants in splicing regions,

highlighting their biological relevance. We present an approach for discovering asQTLs that is a more direct assessment of splicing

compared to other methods and is complementary to other transcript quantification methods.
Introduction

In eukaryotes, alternative splicing is involved in develop-

ment, differentiation,1 and disease2 in a tissue-specific

manner. Splicing events can be categorized under skipped

exon, retained intron, alternative 30 or 50 splice sites, mutu-

ally exclusive exons, alternative first or last exons, or tan-

dem UTR categories. Before the invention of microarray

technology, the proportion of multi-exonic genes under-

going alternative splicing was estimated at approximately

50%.3 However, as the technology improved, these esti-

mates increased to 74% with microarrays4 and to almost

100% with RNA sequencing.5 Although RNA sequencing

has been a very powerful tool in discovering unique tran-

scription in tissues and diseases6 and also in elucidating

the regulation of transcription,7–10 accurately quantifying

transcripts remains a challenge due to the short read

length used in most population-based studies. Currently

there are multiple transcript quantification methods avail-

able including de novo quantification methods like Cuf-

flinks11 and Scripture12 and annotation-based methods

like MISO13 and Flux Capacitor.8 However, both ap-

proaches have inherent flaws because de novo methods

make the assumption that the most parsimonious solution

best describes the underlying transcriptome and annota-

tion-based methods assume complete knowledge of the

transcriptome, both of which are unlikely to be true.

In this study we present a method for relative quantifica-

tion of splicing events from RNA-sequencing data called Al-

trans. Our approach is an annotation-basedmethod, which

makes the least number of assumptions from the annota-
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tion.To this endwechose to simplify theproblemandquan-

tify relative frequencies of observed exon pairings in RNA-

sequencing data for all categories of splicing events. This

approach assumes only correct knowledge of the exons in

the transcriptome and is agnostic to the isoform structures

defined in an annotation, which would, in theory, make it

more accurate and sensitive in thepresenceofunknown iso-

forms.We tested theperformanceofAltransversus twowell-

established transcript quantification methods, Cufflinks11

and MISO,13 and benchmarked our method in two ways.

First, we conducted a simulation study and assessed the

concordance of the measured quantifications by each

method with the simulated quantifications. Second, we as-

sessed the relative power of discovering alternative splicing

quantitative trait loci (asQTLs) for each method. For the

asQTL analyses, we chose the Geuvadis dataset, since it

was, at the time of analyses, the largest publically available

population-based RNA-sequencing study. The Geuvadis da-

taset comprises 462 individuals in the 1000 Genomes proj-

ect14 from five populations—the CEPH (CEU), Finns (FIN),

British (GBR), Toscani (TSI), and Yoruba (YRI)—and con-

tains data for whole-genome DNA sequencing and deep

mRNA sequencing in the lymphoblastoid cell line (LCL)7

and is thus an ideal dataset for our purposes.

Material and Methods

AltransMethod for Relative Quantification of Splicing

Events
Altrans is a method for the relative quantification of splicing

events. It is written in Cþþ and requires a BAM alignment file15
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Figure 1. Schematic of the Altrans Algo-
rithm
(A) Overlapping exons are grouped into
exon groups where identical exons
belonging to multiple transcripts are
treated as one unique entity. Two tran-
scripts, shown as connected brown and
green boxes, result in two exon groups
and three exons shown as blue boxes.
Next, the unique regions of each exon, de-
picted as light blue boxes and a subscript u
followed by the level of the exon, are iden-
tified. Because E2 has a region that is not
shared by any other exon, it is assigned a
‘‘level’’ of 1, and the reads aligning to
E2u,1 can be unambiguously assigned to
E2. E1 does not have a unique portion,
and therefore the level 1 exon, E2, is
removed from the exon group and the
whole of E1 becomes a unique portion,
shown as an empty blue box, with a level
of 2. These unique regions are used when
assigning mate pairs to links as shown
with the red lines where the solid portions
of the line are the sequencedmates and the
dashed part represents the inferred insert.
(B) The default method for calculating link
coverage. Link coverage is necessary to
normalize the observed counts for the
length of the unique portions being linked

and the insert size. The theoretical minimum and maximum insert sizes linking the two unique portions, represented as brown and
green lines, respectively, are calculated and given the empirically determined insert size distribution, and the area under the curve be-
tween the minimum and maximum insert sizes is estimated. The link coverage equals the number of mate pairs linking the two unique
portions over the ratio of this area to the area of the whole insert size distribution.
(C) The degrees of freedommethod for determining link coverage. Here given a read length and insert size of 3 and two exons that are 6
and 5 bases long, there are three mate pair alignments that can link these two exons. Therefore, the degrees of freedom refer to the theo-
retical number of positions where a mate pair (given, in this case, 3þ3þ3 ¼ 9 bp long fragment size) exists that links these exons on the
mRNA, shown as black lines. The link coverage is the number of mate pairs linking the exons over the degrees of freedom.
(D) The equation to calculate F value for a link.
(E) A worked example of calculation of the F values. First the coverage of E2 to E3 link (CE2 � E3) is determined from level 1 unique
regions (CE2u,1 � E3u,1), which is then subtracted from the coverage attained from the pseudo-unique E1 to E3 link (CE1u,2 � E3u,1)
in order to calculate the true E1 � E3 coverage (CE1 � E3). In the forward direction, E1 and E2 become primary exons and in the reverse
direction E3 is the primary exon and the corresponding F values are calculated as shown.
from an RNA-seq experiment and an annotation file in GTF format

containing exon locations. The BAM file is read using the

BamTools API.16 Altrans utilizes paired end reads, where one

mate maps to one exon and the other mate to a different exon,

and/or split reads spanning exon-exon junctions to count ‘‘links’’

between two exons. For reads aligning to multiple locations in the

genome with the same mapping quality, only the primary align-

ment, i.e., the one reported in the BAMfile, is considered and alter-

native alignments that are reported as tags in the BAM file are

ignored. The first exon in a link is referred to as the ‘‘primary

exon.’’ The algorithm is as follows:

1. Groupoverlappingexons fromannotation intoexongroups.

Because we are quantifying splicing events and not individ-

ual transcripts, transcript level information is ignored and

exonswith identical coordinates belonging tomultiple tran-

scripts are treated as one unique exon (Figure 1A).

2. In order to assign reads to overlapping exons, identify

unique portion(s) of each exon in an exon group. Exons

with immediate unique portions, where there is no other

overlapping exon and where a read can be unambiguously

assigned to the exon (E2u,1 in Figure 1A), are called ‘‘level 1

exons.’’ For exons with no unique positions, remove the
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level 1 exons from the exon group to determine regions

that identify the remaining exons uniquely, where again

there is no other overlapping exon after the removal of the

level 1 exons (E2u,2 in Figure 1A), and increment the level

of these exons. In the rare caseswhere an exon shares its start

position with one exon and its end position with another,

causing it to have no unique portion, then this exon is

removed from the analysis in order to be able to assign

unique portions to the remaining exons in the same exon

group. In cases where a larger exon overlaps and fully con-

tains two smaller exons, the insert size distribution is used

to probabilistically assign links between the two smaller

exons (please refer to the Altrans manual for a more detailed

annotation of these rare cases). Iterate through this process

of removing exons that have unique regions until all exons

in a group have unique portions (Figure 1A).

3. Use these unique portions to assign mate pairs or split reads

to links (Figure 1A). Links assigned to unique portions that

exist only after the removal of overlapping exons are puta-

tive assignments and ‘‘deconvolution’’ of these is handled

in the next step.

4. Because all the exons have ambiguous unique portions and

share regions with other exon(s), reads aligning here might
015



belong to multiple exons. In order to unambiguously quan-

tify links between these exons, we calculate ‘‘link coverage’’

for all pairs of exons in a given window size. The default

method divides the link counts with the probability of

observing such a link given the insert size distribution,

which is empirically determined from pairs aligning to

long exons (Figure 1B). The second method involves calcu-

lating the number of degrees of freedom linking two exons

given the empirically determined most frequent insert size

and read length (Figure 1C). This is an alternative model

to calculating link coverage, but we recommend using the

default model unless you have a very tight distribution of

insert sizes. The link coverage metric ensures that the link

counts are normalized for the specific insert size distribution

of the experiment, which has direct effect on the observed

link counts. Hence, link coverage allows us to quantify an

exon link from the unique portions only, i.e., this value

should be equivalent to the one we would calculate if we

were able tomeasure the whole exon. The coverage between

level 1 exons can be calculated directly using the unique

portions, whereas links between higher-level exons are

calculated by iteratively subtracting coverage of all the other

lower level links from the coverage of these links (Figure 1E).

5. Calculate the quantitative metric, F value, for one exon link

as the coverage of the link over the sum of the coverages of

all the links that the primary exon makes (Figures 1D and

1E). Using this fraction rather than link counts or coverage

ensures that the metric is independent of global effects on

gene expression.

6. Repeat step 5 in both 50-to-30 (forward) and 30-to-50 (reverse)
directions to capture splice acceptor and donor effects,

respectively (Figure 1E).

Please refer to the Altrans manual where the method is anno-

tated in more detail and examples of how to run Altrans are pro-

vided. The program also allows the user to calculate an F value

from all the links that a primary exon makes regardless of the di-

rection. Along with the F values, the raw link counts are also

outputted, which allow filtering of results eliminating low count

links. These raw counts can also be normalized and subsequently

reread by the program to calculate the F values. Memory usage and

speed heavily depend on the complexity of the annotation and

the number of reads in the alignment file. For a sample alignment

with 50 million reads and an annotation with 539,748 unique

exons, Altrans ran for 20 min and consumed 784 MB of RAM on

a single 2.2 GHz core under Linux.
Conversion of Transcript Quantifications to Link

Quantifications
We convert the transcript quantifications generatedwith Cufflinks

to relative link quantifications. This is achieved by assigning the

same quantification to all linked exons of a transcript based on

the measured quantification of the said transcript. We then apply

the samemethod of relative link quantification used in the Altrans

algorithm, specifically steps 5 and 6 in the previous section, to

calculate the F value for all the links a primary exon makes.
Simulation Analysis
In order to benchmark the link quantifications generated by

Altrans, we conducted a simulation analysis using the Flux Simu-

lator software.17 We simulated an RNA-sequencing experiment
The Americ
with 50 million reads with the GENCODE v.12 annotation18 re-

flecting cases where we have a perfect annotation describing all

the observed transcripts in the data. Additionally, we introduced

novel transcripts, made up of existing exons of a gene, into the

annotation. This was achieved by creating novel combinations

of exons of a gene while checking for compatibility of the

randomly selected exons (non-overlapping, order matches the

genomic order, and where a UTR or first or last exon is not an in-

ternal exon) and keeping the distribution of number of exons of

the random transcripts similar to that of the known transcripts.

We then simulated 5 cases with 50 million reads where the novel

transcripts accounted for 5%, 10%, 25%, 50%, and 75% of all tran-

scripts, reflecting cases where the annotation is not perfect.

Altrans, Cufflinks,11 and MISO13 were run on these 6 simulated

datasets using the standard GENCODE v.12 annotation. In each

simulation, the ‘‘correct’’ quantification of a transcript is taken

as the RNA molecule count that the Flux Capacitor used to simu-

late reads for a given transcript. We have converted these ‘‘correct’’

transcript quantifications and the measured transcript quantifica-

tions of Cufflinks and MISO to exon link quantifications, as

described in the previous section, and correlated the simulated ex-

pected link quantifications with the measured link quantifications

for the three programs in the six simulation scenarios, using links

where there were overlapping reads or links that were quantified in

both the simulation and the given program. We measured the

concordance between the simulated andmeasured quantifications

via Spearman’s correlation. The estimates of novel splicing in a

dataset are done through counting the number of uniquely map-

ping split reads. We then take junctions that are represented by at

least eight split reads and check whether this junction is present in

the annotation.
cis-Alternative Splicing QTL Discovery by Each

Method in the Geuvadis Dataset
The RNA-seq reads were aligned to the human reference genome

(GRCh37) using the GEM aligner19 and alignments were filtered

for properly paired and uniquely mapping reads (mapping quality

greater than or equal to 150). Genotypes originated from 1000 Ge-

nomes phase 1 data, which is based on 1,092 individuals with 53

whole-genome sequencing data, 803 exome sequencing data, and

high-quality genotyping. The genotype data were filtered for var-

iants with MAF < 5% and HWE p < 1 3 10�6 for each population

separately and were corrected for population stratification using

the first three and two eigenvectors for Europeans and Africans,

respectively.7 The Altrans link counts were normalized using the

first 15 principal components calculated from these link counts.

We first looked at all pairwise links between exon groups consid-

ering the union of all exons in the exon group as one entity and

filter so that we keep only pairs of exon groups that have 15 links

in 80% of the samples. Then we count the links between exons of

the initial exon group and exons of the terminal exon group and

keep only links where the exon in the initial exon group made at

least ten links with any of the exons in the terminal exon group in

at least 30% of the samples. Cufflinks quantifications were run us-

ing the annotation with the –GTF option. In the case of Cufflinks,

the transcript quantifications were converted to link quantifica-

tions and we assessed links originating from the same genes where

there were Altrans quantifications. The cis-window for asQTL dis-

covery was 1 Mb flanking the transcription start site of each gene.

The associations were run with the FastQTL package.20 The

observed nominal p values were calculated by correlating the
an Journal of Human Genetics 97, 567–575, October 1, 2015 569



Figure 2. Simulation Results
Using Flux Simulator, we ran six simulations with varying levels of
unannotated transcripts. Subsequently, we ran quantifications
with three methods with the known GENCODE v.12 annotation.
We compared the simulated versus measured link quantifications
via Spearman’s rank correlation. These comparisons are shown as
colored solid lines. In order to produce a null random distribution
for each method, we took the link quantifications for each gene,
permutated these for 100 times within the links of this gene,
and measured the correlation of these random assignments with
the simulated ones. By using this sampling method stratified by
genes, we account for the variability of number of isoforms per
gene. These correlations for random assignments are shown as
dashed lines. We observe that as the percentage of novel tran-
scripts increase, the performance of Cufflinks and MISO suffer,
whereas this is not the case for Altrans, which results in best quan-
tifications with increased levels of unannotated transcripts.
genotype and link quantifications, which were Gaussian trans-

formed. Subsequently, we ran permutations for each link sepa-

rately to assign empirical p values to each link. The permutation

scheme involved permuting all links of a given gene together

1,000 times and in each permutation iteration, we record the

most significant p value from an association between any variant

in the cis- window and any link of a given gene, thereby account-

ing for the dependencies among the link quantifications of a

gene, allowing us to find significant asQTL genes. From this distri-

bution of null p values we use an approximation using the beta

distribution to estimate the extremes of the null p value distribu-

tion, and using this we calculate an adjusted p value. These

adjusted p values are then corrected for multiple testing using

the qvalue R package.21

Classification of Splicing Events
The alternative splicing events were classified into ten categories:

alternative 30 splice site, alternative 30 UTR, alternative 50 splice
570 The American Journal of Human Genetics 97, 567–575, October
site, alternative 50 UTR, alternative first exon, alternative last

exon, mutually exclusive exon, skipped exon, tandem 30 UTR,

and tandem 50 UTR. For more information on these events, refer

to Wang et al.5 We then classify each primary exon into these

classes based on all of the observed links of the primary exon.

This means that a primary exon can be involved in multiple

splicing events. From these classifications, we then calculate the

proportion of each splicing class in the pool of significant primary

exons. This method of classification was chosen because each link

quantification is dependent on the quantification of all the other

links that a primary exon makes.
Functional Enrichment of asQTLs
To compare the asQTL variants to a null distribution of similar var-

iants without splicing association, we sampled genetic variants in

the same cis-window of 1 Mb surrounding the transcription start

site (TSS) and matched them to alternative splicing variants with

respect to relative distance to TSS (within 5 kb) and minor allele

frequency (within 2%). The variant effect predictor (VEP)22 tool

from Ensembl was modified to produce custom tags that

were STOP_GAINED, SPLICE_DONOR, SPLICE_ACCEPTOR, and

FRAME_SHIFT. This modified version of VEP was applied to the

imputed genotypes using the GENCODE v.1218 annotation. To

this we added information of overlap with chromatin states23

and the Ensembl regulatory build,24 which constituted our func-

tional annotation. The enrichment for a given category was calcu-

lated as the proportion between number regulatory associations in

a given category and all regulatory variants over the same propor-

tion in the null distribution of variants. The p value for this enrich-

ment is calculated with the Fisher exact test.
Results

Simulation Results

The general overview of the Altrans algorithm is provided

in Figure 1. We first aimed to compare the results between

Altrans, Cufflinks, and MISO using simulations. We

compared six scenarios, one where the given annotation

perfectly described the transcripts in the simulations and

five others with 5%, 10%, 25%, 50%, and 75% novel tran-

scripts absent from the annotation (see Material and

Methods). Subsequently we quantified the six simulation

results with both algorithms using the known annotation

in all cases. For MISO we have quantified transcript abun-

dances. This was done to assess howmethods performed in

cases of complete versus incomplete transcriptome knowl-

edge. The transcript quantifications generated by Cufflinks

and MISO were transformed into link quantifications to

make them comparable to those generated by Altrans.

The results of the simulation analysis are shown in

Figure 2. We observe that Cufflinks performs better than

Altrans when the annotation is perfect, but as the percent-

age of novel transcripts in the simulations increases,

Altrans performs better because it suffers less from the

imperfect annotation used in the quantification. In com-

parison, MISO performs less well than both methods. In

order to produce a null random distribution for each

method, we took the link quantifications for each gene
1, 2015



Table 1. Number of Genes Tested and asQTLs Discovered at FDR ¼ 1% in Each Population and by Each Method

Population Number of Genes: Altrans asQTLs Altrans Number of Genes: Cufflinks asQTLs Cufflinks Overlap Overlap p Value

EUR 7,443 1,427 7,148 1,737 780 1.3 3 10�4

YRI 7,720 166 7,391 304 76 1.2 3 10�4

The overlap column lists the common genes between the methods and the p value refers to this overlap arising by chance.
and permutated these for 100 times within the links of this

gene. We then measured the correlation of these random

assignments with the simulated ones and find that Cuf-

flinks and MISO fall to the levels of random assignment

of link quantifications as the novel transcripts increase in

the simulations. We estimated the proportion of novel

transcripts by using split read mappings from a well-

studied LCL transcriptome RNA-sequencing experiment7

and a less well-studied pancreatic beta cell transcriptome

RNA-sequencing experiment.25 We observe that in the

LCLs on average 25.8% (SD ¼ 3.5%) and in the beta cells

34.7% (SD ¼ 9.3%) of the junctions are not found in the

GENCODE v.12 annotation. Therefore we conclude that

in RNA-sequencing experiments where the annotation

does not fully reflect the underlying isoform variety, Al-

trans is a sensitive method for quantifying exon junctions.

cis-Alternative Splicing QTL Discovery and

Replication between Populations

The Geuvadis dataset comprises 373 European (EUR) and

89 African (YRI) samples and the cis-asQTL discovery was

conducted separately in each population as described in

the Material and Methods section. At an FDR threshold

of 1%, we find 1,472 and 1,737 asQTL genes in the Euro-

pean population with Altrans and Cufflinks, respectively.

For the Africans these numbers are 166 and 304, respec-

tively (Table 1). There is a significant overlap between the

methods in the asQTL genes, with Altrans finding approx-

imately 45% of the genes identified by Cufflinks in the

Europeans and about 25% in the Africans (Table 1).

The relative decrease of overlap between the methods in

the African population is due to the decreased samples

size, hence power, in this cohort compared to the Euro-

peans. When we plot the significant asQTLs distances

from the TSS, we observe that for bothmethods the asQTLs

that are shared between the two populations and asQTLs

with stronger effects tend to be closer to the TSS than pop-

ulation-specific and weaker asQTLs (Figure 3A). As ex-

pected, given the sample sizes of each population, majority

of the asQTLs genes in Europeans at this FDR threshold are

unique to this populations (91% for Altrans and 86% for

Cufflinks) whereas most of the African asQTLs genes are

also found in the Europeans (81% for Altrans and 82%

for Cufflinks) (Figure 3B). Using a more sensitive p1

approach,21 we estimate that 72% of the Altrans asQTLs

in Europeans are replicated in Africans and 94% of the

African asQTLs are replicated in Europeans. In the case of

Cufflinks, these estimates are 78% and 93%, respectively

(Figure 3C).
The Americ
We have taken the correlation coefficient as a proxy to

the effect size of an asQTL and compared the absolute

value distribution of the correlation coefficients of signifi-

cant asQTLs identified by each method in both popula-

tions (Figure S1). Cufflinks asQTLs have significantly

higher effect sizes than Altrans asQTLs (Mann-Whitney

p< 1.693 10�5, indicating that Altrans is identifying asso-

ciations with smaller effect sizes compared to Cufflinks

and, together with changes in sample size, this contributes

to slight decrease of replication of European Altrans

asQTLs in Africans, compared to Cufflinks. Of note,

when we discover asQTLs in Africans (smaller sample

size) and replicate in Europeans (larger sample size), both

methods achieve very high levels of replication (94% and

93% for Altrans and Cufflinks, respectively). In order to

test the replication of asQTLs by each method indepen-

dent of sample size and different populations, we have

selected 91 European individuals belonging to the CEU

population and replicated the findings of this cohort in

the larger 282 remaining European samples. When we

calculate the p1 statistic in this analysis, we observe

that both methods attain very similar levels of replication

(p1 ¼ 95% for both methods) (Figure S2).

Differences between Methods

Given that both methods replicate at similar levels and

Cufflinks finds more asQTLs, one can make the argument

that this could be the method of choice. However, almost

half of the asQTLs that are discovered with Altrans are

unique to Altrans. Although the methodology in identi-

fying splicing QTLs in the original Geuvadis analysis dif-

fers significantly from the process described here, we also

checked the asQTL gene level overlap between the pub-

lished lists of splicing QTLs7 and the ones identified here

(Figure S3). We find that Altrans detects 258 out of the

620 asQTLs identified in the Europeans in the original

study, and Cufflinks finds 348 overlapping asQTLs. The

union of both methods used here identifies 395 genes as

significant asQTLs out of the 620 in the original discovery.

In the African population, the overlap proportions are

similar, with Altrans finding 16 out of 83 asQTLs as also sig-

nificant, whereas Cufflinks finds 35 common genes, and

the union of Altrans and Cufflinks overlaps with 38 asQTLs

in the original study. This is a confirmation of the comple-

mentary nature of asQTL discovery methods.

We investigated the Altrans-specific asQTLs further. First

we find that the majority of the Altrans-specific asQTLs

originate from links between exons that are not annotated

in the GENCODE v.12 annotation and therefore were
an Journal of Human Genetics 97, 567–575, October 1, 2015 571



Figure 3. asQTL Discovery
(A) The relative distance of asQTLs to the TSS versus the p value.
(B) Mosaic plots of gene level sharing of asQTLs for each method at FDR ¼ 1%.
(C) The p value distributions of a variant-link pair tested in the other population for each method. From these p value distributions, the
p1 statistic is calculated that estimates the proportion of true positives.
never tested by Cufflinks (89% and 83% not annotated for

Europeans and Africans, respectively; Figure S3). Next, we

assessed whether Altrans-specific discoveries replicate,

and to do so we tested the Altrans-specific discoveries orig-

inating from the 91 CEU individuals in the remaining

Europeans, and these associations achieve a p1 statistic of

93%, indicating a high true positive rate in Altrans-specific

asQTLs (Figure S4A). We also estimate that 63% of the

Altrans-specific asQTLs in Europeans are replicated in Afri-

cans and 95% of the African Altrans-specific asQTLs are

replicated in Europeans.

Moreover, we compared the types of splicing events that

are found to be significant by bothmethods (Figure S5) and

observed that there are differences between the two

methods. The majority (66%) of the signal that Altrans

captures is due to exon skipping events followed by alter-

native 50 and 30 UTRs (15% and 11%, respectively). In com-

parison, Cufflinks has a more uniform distribution of

significant event types, with the most common being

alternative 50 UTR (23%), followed by exon skipping

(15%) and alternative first exons (14%). This difference

in types of significant splicing events each method finds

highlights their relative merits in identifying different

types of splicing events and is one of the reasons for

method-specific significant results. We have tested

whether the exon skipping events identified by Altrans

replicate between CEU discovery and remaining Euro-

peans, and across populations, and we achieve high p1

values of 98% for CEU discovery replicated in remaining

Europeans (Figure S4B), 70% for Europeans replicated in
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Africans, and 96% in Africans replicated in Europeans,

which confirms that these events are enriched for true

positives.

Replication of Discoveries by One Method in the

Other Method

We wanted to assess how discoveries of one method

compared to the other. For each significant variant-link

pair in one population by one method, we calculated the

p value of the same variant-link pair in the same popula-

tion based on quantifications by the other method. For

this we had to select common links identified by each

method, and therefore many genes are not being tested

for replication acrossmethods. From these p value distribu-

tions, we calculated the p1 statistic, which indicates the

proportion of true positives (Figure S6). We estimate that

94% of Altrans asQTLs in Europeans and 90% Altrans

asQTLs in Africans are replicated by Cufflinks quantifica-

tions in the corresponding population, for the common

links between the two methods. In contrast, replication in

the other direction, Cufflinks asQTLs in Altrans, is lower:

57% and 51% for Europeans and Africans, respectively.

When we are testing Altrans results in Cufflinks, we are

testing 507 and 77 genes for Europeans and Africans,

respectively, and when testing Cufflinks in Altrans, these

values are 1,260 and 230, respectively. We then multiply

the corresponding p1 values with these number of genes

tested to get an estimate of the number of genes that repli-

cate across methods and divide these with the correspond-

ing number of asQTL genes found in the original discovery
1, 2015



Figure 4. Functional Enrichments of asQTLs Discovered by Altrans and Cufflinks
All variants identified in separate populations are merged. The null (frequency and distance matched) is represented as the black hori-
zontal line. The numbers above each bar are the �log10 p values of the enrichment, Altrans enrichment p value followed by Cufflinks
p value.
(e.g., for European Cufflinks in Altrans: 1,260 3 0.57 /

1,737 ¼ 41%). In doing so we estimate the percentage of

genes that are ‘‘discoverable’’ by theothermethod. This per-

centage is similar across methods and is in the Europeans

33% and 41% for Altrans and Cufflinks, respectively. In

the Africans these values are 42% and 39%. This is due to

the different space of alternative splicing that eachmethod

is best at quantifying and is another confirmation of the

complementary nature of these methods.

Functional Relevance of asQTLs

In the absence of a known and true set of asQTLs, we can

use the functional annotation of the human genome

generated by the ENCODE project to assess whether the

asQTLs discovered are likely to be biologically active. If

the identified asQTLs are ‘‘real,’’ then we would expect

them to lie in biochemically functional regions of the

genome more often than expected by chance. We have

tested this by overlapping asQTLs with functional annota-

tions provided by the Ensemble regulatory build24 and

comparing this overlap to that of random set non-asQTL

variants, which were matched to the asQTLs based on rela-

tive distance from TSS and allele frequency (Material and

Methods). We find significant enrichments for many tran-

scription factor peaks (median 5.23 median p ¼ 4.41 3

10�8 for Altrans and median 4.43 median p ¼ 2.26 3

10�7 for Cufflinks), DNase1 hypersensitive sites (4.23

p ¼ 1.53 3 10�46 for Altrans and 2.93 p ¼ 5.05 3 10�23

for Cufflinks), chromatin marks for active promoters (me-

dian 4.33median p¼ 1.513 10�51 for Altrans andmedian

4.03 median p ¼ 5.15 3 10�54 for Cufflinks), as well as

strong enhancer marks (median 3.93 median p ¼ 3.46 3

10�40 for Altrans and median 3.43 median p ¼ 2.76 3

10�35 for Cufflinks) in asQTLs identified by both methods

(Figure 4). We also observe a significant depletion in

repressor marks (3.33 p ¼ 3.51 3 10�17 for Altrans and
The Americ
5.03 p ¼ 2.28 3 10�26 for Cufflinks). All together these re-

sults confirm the functional relevance of asQTLs and indi-

cate that we are capturing true biological signal. Further-

more, we also observe strong significant enrichments for

variants that are in splice acceptor (33.33 p ¼ 8.36 3

10�9 for Altrans and 553 p ¼ 2.25 3 10�10 for Cufflinks)

and donor (103 p ¼ 0.01 for Altrans and 303 p ¼ 1.34 3

10�5 for Cufflinks) sites as well as variants in splice regions

(12.33 p ¼ 4.83 3 10�28 for Altrans and 12.83 p ¼ 2.31 3

10�37 for Cufflinks), which also indicates that we are

capturing variants involved in splicing machinery.
Discussion

Here we present a method, Altrans, for relative quantifica-

tion of splicing events (Figure 1) to be used in population

genetics studies in discovery of asQTLs. Because the

phenotype is splicing ratios of exon links calculated from

mapping of RNA-sequencing reads without modeling of

transcript structure, it is a more direct estimation of

splicing. We have assessed the performance of the Altrans

algorithm versus the Cufflinks method both on simulated

and biological data. The simulation analysis indicates that

when the annotation perfectly describes the underlying

isoform variety, Cufflinks performs better than Altrans.

Because there is no easy way to generate junction annota-

tions that is used by MISO, and because we needed to have

a common annotation in all analysis (we could not use the

junctions provided in the MISO website), we chose to

quantify transcripts rather than junctions. Although

MISOmight perform better if we had quantified junctions,

the analysis performed is equivalent to the one with Cuf-

flinks, and still MISO underperforms compared to

Cufflinks. The reason Altrans is worse when compared to

Cufflinks in the presence of a perfect annotation is that
an Journal of Human Genetics 97, 567–575, October 1, 2015 573



Cufflinks quantifies transcript rather than exon links, i.e.,

it uses the total length of the transcript in quantifications,

whereas Altrans uses only the observed reads that are link-

ing a pair of exons. When we convert the transcript quan-

tifications of Cufflinks into link quantifications, this

means that all the links in a transcript will ‘‘borrow’’ infor-

mation from other links of the transcript, whereas in

Altrans all the links will be independently measured from

the observed reads overlapping the link. Moreover, when

the perfect annotation is available using transcript quanti-

fications, as in the case of Cufflinks, then Cufflinks is a

more accurate approach. However, the simulations also

show that when there are novel transcripts, i.e., isoforms

that are not represented in the annotation, the accuracy

of transcript quantifications decreases for Cufflinks and

MISO whereas Altrans quantifications do not suffer as

much as the transcript quantifications. We estimate that

in less well-studied transcriptomes like the human pancre-

atic beta cell transcriptome,25 the proportion of the links

between exons that are novel would be high enough that

using the known annotation can result in unreliable

estimates.

It is important to assess the performance of a method us-

ing biological data, and we applied Altrans and Cufflinks to

the Geuvadis dataset7 with the specific aim of identifying

asQTLs. We find 1,427 and 1,737 asQTL genes in the Euro-

pean population and 166 and 304 asQTLs in the Africans

with Altrans and Cufflinks, respectively. Using two subsets

from the European samples, we show that Altrans and Cuf-

flinks achieve similar levels of replication. Altrans-specific

asQTLs accounts for 45% of this method’s discovery,

which we show is mainly due to it quantifying junctions

that are not annotated in the reference. Moreover, these

Altrans-specific asQTLs replicate as well as the common

genes, indicating that they are probably true positives.

The other reason for the method-specific asQTLs is the

different types of alternative splicing events each method

captures (Figure S4). Altrans is more powerful in capturing

exon skipping events, whereas Cufflinks appears to be as

powerful in capturing events in the ends of transcripts.

This is an expected result given how each method works.

Because Altrans is examining reads that link multiple

exons, it will perform relatively poorly when a read pair

has to extend over constitutive parts of exon groups if

constitutive parts are larger than the insert size of the

experiment, because there will be very few reads joining

these types of exons. On the other hand, because Cufflinks

uses all reads over a transcript, it will not fail to quantify

these types of events accurately and this is reflected in

the types of events each algorithm identifies. Furthermore,

when we compare replication of results of one method by

the other method and account for the overlap of observed

links between the two methods, we find similar levels

of overlap between the detectable discoveries for each

method.

The relevance of the asQTLs identified by both methods

is confirmed by their significant overlap with functional
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annotations. This result, in the absence of a compre-

hensive list of asQTLs, shows that asQTLs that we are

capturing reside in biochemically active regions of the

genome, which reaffirms that we are capturing real biolog-

ical signal.

RNA sequencing allows us to comprehensively measure

transcript diversity in different cells types at the popula-

tion scale. However, quantifying alternative splicing from

short read length RNA sequencing remains a challenge.

This problem will be alleviated when technologies that

would permit sequencing of full-length transcripts, like

nanopore sequencing,26 become available, reliable, and

are cost effective in population studies. Currently all

methods have to infer quantifications of transcripts or

splice junctions, and each method in doing so has its rela-

tive merits. Here we present a different approach to this

problem, called Altrans, and show that it is sensitive and

performs comparably to other methods. We show that it

is capable of identifying thousands of asQTLs, many of

which are missed by other methods. We believe it will

prove useful in the search for alternative splicing QTLs in

population genetics studies.
Supplemental Data

Supplemental Data include six figures and can be found with this

article online at http://dx.doi.org/10.1016/j.ajhg.2015.09.004.
Acknowledgments

This research is supported by grants from European Commission

SYSCOL FP7 (UE7-SYSCOL-258236), European Research Council,

Louis Jeantet Foundation, Swiss National Science Foundation,

and the NIH-NIMH (GTEx). We thank Alfonso Buil for statistical

support. The computations were performed at the Vital-IT Swiss

Institute of Bioinformatics.

Received: April 20, 2015

Accepted: September 1, 2015

Published: October 1, 2015
Web Resources

The URLs for data presented herein are as follows:

Altrans, http://sourceforge.net/projects/altrans/

Vital-IT, http://www.vital-it.ch
References

1. Graveley, B.R., Brooks, A.N., Carlson, J.W., Duff, M.O., Lando-

lin, J.M., Yang, L., Artieri, C.G., van Baren, M.J., Boley, N.,

Booth, B.W., et al. (2011). The developmental transcriptome

of Drosophila melanogaster. Nature 471, 473–479.

2. Yoshida, K., Sanada, M., Shiraishi, Y., Nowak, D., Nagata, Y.,

Yamamoto, R., Sato, Y., Sato-Otsubo, A., Kon, A., Nagasaki,

M., et al. (2011). Frequent pathway mutations of splicing ma-

chinery in myelodysplasia. Nature 478, 64–69.

3. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody,

M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh,
1, 2015

http://dx.doi.org/10.1016/j.ajhg.2015.09.004
http://sourceforge.net/projects/altrans/
http://www.vital-it.ch
http://refhub.elsevier.com/S0002-9297(15)00368-7/sref1
http://refhub.elsevier.com/S0002-9297(15)00368-7/sref1
http://refhub.elsevier.com/S0002-9297(15)00368-7/sref1
http://refhub.elsevier.com/S0002-9297(15)00368-7/sref1
http://refhub.elsevier.com/S0002-9297(15)00368-7/sref2
http://refhub.elsevier.com/S0002-9297(15)00368-7/sref2
http://refhub.elsevier.com/S0002-9297(15)00368-7/sref2
http://refhub.elsevier.com/S0002-9297(15)00368-7/sref2
http://refhub.elsevier.com/S0002-9297(15)00368-7/sref3
http://refhub.elsevier.com/S0002-9297(15)00368-7/sref3


W., et al.; International Human Genome Sequencing Con-

sortium (2001). Initial sequencing and analysis of the human

genome. Nature 409, 860–921.

4. Johnson, J.M., Castle, J., Garrett-Engele, P., Kan, Z., Loerch,

P.M., Armour, C.D., Santos, R., Schadt, E.E., Stoughton, R.,

and Shoemaker, D.D. (2003). Genome-wide survey of human

alternative pre-mRNA splicing with exon junction microar-

rays. Science 302, 2141–2144.

5. Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L.,

Mayr, C., Kingsmore, S.F., Schroth, G.P., and Burge, C.B.

(2008). Alternative isoform regulation in human tissue tran-

scriptomes. Nature 456, 470–476.

6. Wang, Y.C., Wei, L.J., Liu, J.T., Li, S.X., and Wang, Q.S. (2012).

Comparison of cancer incidence between China and the USA.

Cancer Biol. Med. 9, 128–132.

7. Lappalainen, T., Sammeth, M., Friedländer, M.R., ’t Hoen, P.A.,

Monlong, J., Rivas, M.A., Gonzàlez-Porta, M., Kurbatova, N.,
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