Main Page
About US
Director Message
No. Decision and Establashment Date
vision & mission
Our objectives
Our achievements
Organization Chart
Administration
Executive Board
Administrative Board
Scientific Advisor Committee
Postgraduate Committee
Ethical Committee
Elite Student Program Committee
Administrative Unit
Secretary Unit
Employment Unit
Ordering and Purchasing Unit
IT Unit
Financial Unit
Public Relations and Marketing Unit
Transportation Unit
Researchers
Senior Staff
Research Leaders
Research Staff
Technical Staff Labs
Research Programs
About Research Programs
Biobanking & Biospecimen Research Program
Cancer Genomic Research Program
Functional & Developmental Genomics Research Progr
Genomic Screening Research Program
Neurogenetic Research Program
Pharmacogenomics Research Program
Tissue Culture & Regenerative Medicine Research
Research Service Units
About Research Service Units
Biobanking Unit
Bioimaging Unit
Bioinformatics Unit
Biomedical Engineering Unit
Diagnostic & Genomic Medicine Unit (DGMU)
Cytogenetic Service Unit
Molecular Service Unit
Flowcytometry Unit
Genetic Counselling Unit
High-Throughput Sequencing Unit
Histopathology Unit
Microarray (Affymetrix) Unit
Microarray (Agilent) Unit
Pharmacogenomics & Drug Discovery Unit
Preimplantation Genetic Diagnosis Unit
Proteomics and Metabolomics Unit
Quantitative Genotyping Unit
Teratogenecity & Toxicity Unit
Tissue Culture Unit
Education & Outreach Program
About Education & Outreach Program
Master of Science Program
About the Program
Master Students
Doctor of Philosophy Program
About the Program
Ph.D. Students
Training Program
About Program
Specialized Training Program in Clinical Cyto.
Public Awareness Program
Collaborations
About Collaborations
National Level Collaborations
International Level Collaborations
Quality Management Program
About Quality Management Program
QMP Outline
QMP Aims and Function
Publications
CEGMR Publication List
Submit Publication Permission Request
CEGMR Booklets
CEGMR Newsletter
CEGMR Workshops
Conferences and Seminars
CEGMR Training Programs
Conferences & Workshops
Conferences
Workshops
Seminars and Training Courses
Parteners
Academic Parteners
National
International
Commercial Parteners
National
International
Related Links
Government
Journals
Non-Governmental Organizations
International Organizations
Medical Dictionaries
Search Engines for Researchers
PhotoAlbum
Files
Contact Us
Center map
Site Map
Latest News
Our Events
CEGMR Research
Research
Application for Employment
عربي
English
About
Admission
Academic
Research and Innovations
University Life
E-Services
Search
Center of Excellence In Genomic Medicine Research
Document Details
Document Type
:
Article In Journal
Document Title
:
Sprouty2 mediated tuning of signalling is essential for somite myogenesis
Sprouty2 mediated tuning of signalling is essential for somite myogenesis
Document Language
:
English
Abstract
:
BACKGROUND: Negative regulators of signal transduction cascades play critical roles in controlling different aspects of normal embryonic development. Sprouty2 (Spry2) negatively regulates receptor tyrosine kinases (RTK) and FGF signalling and is important in differentiation, cell migration and proliferation. In vertebrate embryos, Spry2 is expressed in paraxial mesoderm and in forming somites. Expression is maintained in the myotome until late stages of somite differentiation. However, its role and mode of action during somite myogenesis is still unclear. RESULTS: Here, we analysed chick Spry2 expression and showed that it overlaps with that of myogenic regulatory factors MyoD and Mgn. Targeted mis-expression of Spry2 led to inhibition of myogenesis, whilst its C-terminal domain led to an increased number of myogenic cells by stimulating cell proliferation. CONCLUSIONS: Spry2 is expressed in somite myotomes and its expression overlaps with myogenic regulatory factors. Overexpression and dominant-negative interference showed that Spry2 plays a crucial role in regulating chick myogenesis by fine tuning of FGF signaling through a negative feedback loop. We also propose that mir-23, mir-27 and mir-128 could be part of the negative feedback loop mechanism. Our analysis is the first to shed some light on in vivo Spry2 function during chick somite myogenesis.
ISSN
:
1755-8794
Journal Name
:
BMC medical genomics
Volume
:
8
Issue Number
:
1
Publishing Year
:
1436 AH
2015 AD
Article Type
:
Article
Added Date
:
Tuesday, April 5, 2016
Researchers
Researcher Name (Arabic)
Researcher Name (English)
Researcher Type
Dr Grade
Email
Muhammad Abu-Elmagd
Abu-Elmagd, Muhammad
Investigator
Katarzyna Goljanek Whysall
Whysall, Katarzyna Goljanek
Researcher
Grant Wheeler
Wheeler, Grant
Researcher
Andrea Münsterberg
Münsterberg, Andrea
Researcher
Files
File Name
Type
Description
38444.pdf
pdf
Back To Researches Page