Main Page
About US
Director Message
No. Decision and Establashment Date
vision & mission
Our objectives
Our achievements
Organization Chart
Administration
Executive Board
Administrative Board
Scientific Advisor Committee
Postgraduate Committee
Ethical Committee
Elite Student Program Committee
Administrative Unit
Secretary Unit
Employment Unit
Ordering and Purchasing Unit
IT Unit
Financial Unit
Public Relations and Marketing Unit
Transportation Unit
Researchers
Senior Staff
Research Leaders
Research Staff
Technical Staff Labs
Research Programs
About Research Programs
Biobanking & Biospecimen Research Program
Cancer Genomic Research Program
Functional & Developmental Genomics Research Progr
Genomic Screening Research Program
Neurogenetic Research Program
Pharmacogenomics Research Program
Tissue Culture & Regenerative Medicine Research
Research Service Units
About Research Service Units
Biobanking Unit
Bioimaging Unit
Bioinformatics Unit
Biomedical Engineering Unit
Diagnostic & Genomic Medicine Unit (DGMU)
Cytogenetic Service Unit
Molecular Service Unit
Flowcytometry Unit
Genetic Counselling Unit
High-Throughput Sequencing Unit
Histopathology Unit
Microarray (Affymetrix) Unit
Microarray (Agilent) Unit
Pharmacogenomics & Drug Discovery Unit
Preimplantation Genetic Diagnosis Unit
Proteomics and Metabolomics Unit
Quantitative Genotyping Unit
Teratogenecity & Toxicity Unit
Tissue Culture Unit
Education & Outreach Program
About Education & Outreach Program
Master of Science Program
About the Program
Master Students
Doctor of Philosophy Program
About the Program
Ph.D. Students
Training Program
About Program
Specialized Training Program in Clinical Cyto.
Public Awareness Program
Collaborations
About Collaborations
National Level Collaborations
International Level Collaborations
Quality Management Program
About Quality Management Program
QMP Outline
QMP Aims and Function
Publications
CEGMR Publication List
Submit Publication Permission Request
CEGMR Booklets
CEGMR Newsletter
CEGMR Workshops
Conferences and Seminars
CEGMR Training Programs
Conferences & Workshops
Conferences
Workshops
Seminars and Training Courses
Parteners
Academic Parteners
National
International
Commercial Parteners
National
International
Related Links
Government
Journals
Non-Governmental Organizations
International Organizations
Medical Dictionaries
Search Engines for Researchers
PhotoAlbum
Files
Contact Us
Center map
Site Map
Latest News
Our Events
CEGMR Research
Research
Application for Employment
عربي
English
About
Admission
Academic
Research and Innovations
University Life
E-Services
Search
Center of Excellence In Genomic Medicine Research
Document Details
Document Type
:
Article In Journal
Document Title
:
Frequent epigenetic inactivation of the SLIT2 gene in gliomas
Frequent epigenetic inactivation of the SLIT2 gene in gliomas
Document Language
:
English
Abstract
:
The SLIT family of genes consists of large extracellular matrix-secreted and membrane-associated glycoproteins. The Slits (Slit1–3) are ligands for the repulsive guidance receptors, the robo gene family. The Slit–Robo interactions mediate the repulsive cues on axons and growth cones during neural development. In a recent report, we demonstrated that promoter region CpG island of human SLIT2 was frequently hypermethylated in lung, breast and colorectal tumours and the silenced gene transcript suppressed the malignant phenotype in in vitro assays. In this report we undertook epigenetic, genetic and expression analysis of SLIT2 gene in a large series of gliomas and glioma cell lines. Promoter region CpG island of SLIT2 was found to be methylated in 71% (5/7) of glioma cell lines and was unmethylated in five DNA samples from normal brain tissues. The hypermethylation of the SLIT2 promoter region in glioma cell lines correlated with loss of expression and treatment with the demethylating agent 5-aza-2’-deoxycytidine reactivated SLIT2 gene expression. In primary gliomas, SLIT2 was methylated in 59% (37/63) of tumours analysed. In addition, SLIT2 expression was downregulated in methylated gliomas relative to unmethylated tumour samples, as demonstrated by quantitative real-time RT–PCR. Loss of heterozygosity analysis revealed that SLIT2 methylated gliomas retained both alleles of a microsatellite marker within 100 kb of the SLIT2 gene at 4p15.2. Exogenous expression of SLIT2 in a glioma cell line that was heavily methylated for SLIT2 decreased in vitro colony formation. Our data indicate that SLIT2 is frequently inactivated by promoter region CpG island hypermethylation in gliomas and may be a good candidate for a glioma tumour suppressor gene (TSG) located at 4p15.2. Furthermore, our data suggest that a detailed analysis of both the cancer genome and epigenome will be required to identify key TSGs involved in glioma development.
ISSN
:
1476-5594
Journal Name
:
Oncogene
Volume
:
22
Issue Number
:
29
Publishing Year
:
1424 AH
2003 AD
Article Type
:
Article
Added Date
:
Monday, April 26, 2010
Researchers
Researcher Name (Arabic)
Researcher Name (English)
Researcher Type
Dr Grade
Email
فريدة لطيف
latif, Farida
Investigator
Doctorate
flatif@hgmp.mrc.ac.uk
أشرف دلول
Dallol, Ashraf
Researcher
Doctorate
Back To Researches Page