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Abstract. Let R be an associative ring with identity 1 and J(R) the Jacob- 

son radical of R. Suppose that m _ 1 is a fixed positive integer and R an 

m-torsion-free ring with 1. In the present paper, it is shown that R is commu- 

tative if R satisfies both the conditions (i) [xm, ym] = 0 for all x, y 2 R\J(R) 

and (ii) [x, [x, ym]] = 0, for all x, y 2 R\J(R). This result is also valid if (ii) 

is replaced by (ii)’ [(yx)mxm − xm(xy)m, x] = 0, for all x, y 2 R\N(R). Our 

results generalize many well-known commutativity theorems (cf. [1], [2], [3], 

[4], [5], [6], [9], [10], [11] and [14]). 

 

1. Introduction 

 
Throughout, R represents an associative ring with identity 1, Z(R) the centre 

of R,U(R) denotes the group of units of R, J(R) the Jacobson radical of R,N(R) 

the set of nilpotent elements of R, and C(R) the commutator ideal of R. As usual, 

for any x, y ∈ R, the symbol [x, y] will stand for the commutator xy − yx. Let 

m ≥ 1 be a fixed positive integer and a non-empty subset S of R. We consider 

the following ring properties. 

C1(m, S) [xm, ym] = 0 for all x, y ∈ S. 

C2(m, S) [x, [x, ym]] = 0 for all x, y ∈ S. 

C3(m, S) (xy)m = xmym for all x, y ∈ S. 

C4(m, S) (xy)m − xmym ∈ Z(R) for all x, y ∈ S. 

C5(m, S) (xy)m − ymxm ∈ Z(R) for all x, y ∈ S. 

C6(m, S) [(xy)m پ} ymxm, x] = 0 = [(yx)m پ} xmym, x] for all x, y ∈ S. 

C7(m, S) [(yx)mxm − xm(xy)m, x] = 0 for all x, y ∈ S. 

Q(m) For any x, y ∈ R, m[x, y] = 0 implies [x, y] = 0. 
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