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Regression via classification (RvC) is a method in which a regression problem is converted into a classi-
fication problem. A discretization process is used to covert continuous target value to classes. The discret-
ized data can be used with classifiers as a classification problem. In this paper, we use a discretization
method, Extreme Randomized Discretization (ERD), in which bin boundaries are created randomly to cre-
ate ensembles. We present two ensemble methods for RvC problems. We show theoretically that the pro-
posed ensembles for RvC perform better than RvC with the equal-width discretization method. We also
show the superiority of the proposed ensemble methods experimentally. Experimental results suggest
that the proposed ensembles perform competitively to the method developed specifically for regression
problems.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In machine learning and data mining fields, supervised learning
plays an important role (Bishop, 2008; Mitchell, 1997). In a regres-
sion problem, the target values are continuous, whereas in the
classification problem we have discrete set of classes. The other
difference is that regression values have a natural ordering,
whereas for the classification the class values are unordered
(Bishop, 2008; Mitchell, 1997). Regression models are not easily
understood by domain experts, and thus provide little help in
understanding the problem, whereas classification models are
more comprehensible, but not very useful, when the target values
are continuous. There are some learning schemes, like naive Bayes,
which are very successful as classification techniques, however,
they are difficult to use as regression schemes. Decision trees
(Breiman, Friedman, Olshen, & Stone, 1984; Quinlan, 1993), neural
networks (Bishop, 2008; Mitchell, 1997), naive Bayes (Bishop,
2008; Mitchell, 1997), support vector machines (Burges, 1998;
Vapnik, 1998), etc. are quite popular for classification problems,
whereas regression trees (Breiman et al., 1984), neural networks
(Bishop, 2008; Mitchell, 1997), support vector machines (Burges,
1998; Vapnik, 1998), etc. are used for regression problems.

Discretization (Dougherty, Kahavi, & Sahami, 1995) is a process
that divides continuous numeric values into a set of intervals (bins)
that can be considered as categorical values. Dougherty et al. (1995)
define three axes upon which discretization methods can be classi-
fied; global vs. local, supervised vs. unsupervised and static vs.
ll rights reserved.
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dynamic. Supervised methods use the information of class labels,
whereas, unsupervised methods do not. Local methods as the one
used in C4.5 decision trees, produce partitions that are applied to
localized regions of the instance space. Global methods are applied
to the entire dataset. In static methods, attributes are discretized
independently of each other, whereas, dynamic methods take into
account the interdependencies between them. Equal-width inter-
vals, equal-frequency intervals and unsupervised Monothetic Con-
trast Criteria (MCC) (Van de Merckt, 1993) are unsupervised
methods. Discretization methods based on entropy (supervised
MCC Van de Merckt, 1993, entropy minimization discretization
Fayyad & Irani, 1993, D-2 Catlett, 1991), 1DR (Holte, 1993), adaptive
quantizers (Chan, Batur, & Srinivasan, 1991), Vector Quantization
(Kohonen, 1989), etc. are supervised methods. Equal-width inter-
vals and equal-frequency intervals are global methods. The discret-
ization used in the C4.5 decision tree growing phase and Vector
Quantization are local methods. All these methods are static meth-
ods. Dynamic methods are a promising area of research. As these
methods are able to capture interdependencies between attributes,
they may improve the accuracy of decision rules (Kwedlo & Kretow-
ski, 1999). Kwedlo and Kretowski (1999) show that static methods
(that do not capture interdependencies) run the risk of missing
information necessary for correct classification.

Researchers (Bibi, Tsoumakas, Stamelos, & Vlahavas, 2008;
Indurkhya & Weiss, 2001; Torgo & Gama, 1997, 1997, 1999) sug-
gest that the discretization process can be used to convert contin-
uous target values into a discrete set of classes and then
classification models are used to solve the classification problems.
In other words, in a RvC problem, a regression problem is solved by
converting it into a classification problem. This method employs
any classifier on a copy of the data that has the target attribute
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discretized. The whole process of RvC comprises of two important
stages:

1. The discretization of the numeric target variable in order to
learn a classification model. There are different discretization
methods, e.g. equal-width, equal-frequency, etc. (Dougherty
et al., 1995).

2. The reverse process of transforming the class output of the clas-
sification model into a numeric prediction. We may use the
mean value of the target variable for each interval as the final
prediction.

Ensembles are a combination of multiple base models (Diette-
rich, 2000; Hansen & Salamon, 1990; Tumer & Ghosh, 1996); the
final classification or regression results depends on the combined
outputs of individual models. Ensembles have shown to produce
better results than single models, provided the models are accurate
and diverse (Hansen & Salamon, 1990).

Neural networks and decision tree ensembles are quite popular.
Bagging Breiman (1996) and Boosting methods (Freund & Schapire,
1997) are general and can be used with any classifier. Several dif-
ferent methods have been proposed to build decision tree ensem-
bles. Breiman (2001) proposed Random Forests. To build a tree, it
uses a bootstrap replica of the training sample, then during the tree
growing phase, at each node the optimal split is selected from a
random subset of size K of candidate features. Geurts, Ernst, and
Wehenkel (2006) proposd Extremely Randomized Trees, which com-
bines the feature randomization of Random Subspaces with a to-
tally random selection of the cut-point. Random decision trees
(Fan, McCloskey, & Yu, 2006; Fan, Wang, & Yu, 2003) proposed
by Fan et al. use completely random splits points. These decision
tree ensemble methods have shown excellent performance for
the regression problems.

In spite of the excellent performance of pure randomization-
based ensemble methods, there is little theoretical explanation
about their performance (Rodriguez, Kuncheva, & Alonso, 2006).
The success of an ensemble method depends on its ability to create
uncorrelated individual models (Kuncheva, 2004). However, it is
very difficult to predict exactly the performance of these ensem-
bles. Our main contributions in this paper are;

1. We propose two novel ensemble methods for RvC problems.
2. We show theoretically that for a set of problem, it is possible to

predict the performance of the proposed ensembles. Our theo-
retical predictions match experimental results.

The paper is organized as follows. In Section 2, we present the
proposed ensemble methods for RvC and discuss some of its prop-
erties. In Section 3, we present our experimental results. Section 4
contains the conclusion.
2. The proposed method

In this section, we discuss our proposed ensemble methods for
RvC. We also show that the one of proposed ensembles for RvC per-
forms better than single model with equal-width discretization for
RvC, if the number of bins is 3. Whereas, the second proposed
ensemble method performs better than the single model with
equal-width discretization for RvC, if the number of bins is 2.

2.1. Extreme Randomized Discretization (ERD)

Ahmad (2010) presented a discretization method, Extreme Ran-
domized Discretization (ERD), for creating ensembles of decision
trees. In this method bin boundaries are created randomly. This
method was used to discretize attributes. We will use the same
method to create ensembles for RvC. Though the same method is
used, the theoretical explanation and applications are different.
In Ahmad (2010), ERD was used to discretize attributes, whereas
in this paper, ERD is used to discretize the target variable.

We propose that ERD is useful in creating ensembles for RvC. As
discussed above, In ERD, bin boundaries for the discretization are
created randomly. This may be used in stage (1) of RvC. As it
creates diverse datasets, different classifiers can be created. Uncor-
related models are the keys to the success of any ensemble method
(Kuncheva, 2004). In the next subsection, we will show our theo-
retical results.

2.2. Theoretical results

In this section, all the results are proved under following
conditions;

(1) The target value is uniformly distributed between 0 and 4L.
(2) Each regression function value is predicted once.
(3) The classification error is 0.
(4) The mean value of the target variable for each interval is the

predicted value. As the target value is uniformly distributed,
the center of the bin is the predicted value.

(5) y is the target variable.
(6) yp is the target value of the point p.
(7) The number of models in an ensemble is1 and each model

has different bin boundaries.
(8) The final result of an ensemble is the mean of all the predic-

tions (by single models).

As we have assumed that the classification error is 0, all the the-
oretical results are independent of the choice of the type of
classifiers.

2.3. RvC with the equal-width discretization method with two bins

In this case, two equal sized bins are created, the bin boundary is
at 2L, all the points at the left side of the bin boundary will be pre-
dicted as L (the mid point of the left bin) and all the points at the
right side of the bin boundary will be predicted as 3L (the mid point
of the right bin). Hence, the points with target values around L and
3L will be predicted more accurately, whereas points at the 0, 2L
and 4L will have more error.

The mean square error (MSE) in this case is

ð1=4LÞ
Z 2L

0
ðy� LÞ2 dyþ

Z 4L

2L
ðy� 3LÞ2 dy

� �
¼ 0:33L2: ð1Þ

For 4L = 100, the MSE is 208.33.

2.4. RvC with ERD with two bins

ERD creates different bin boundaries, in different runs (we have
assumed that no two bin boundaries are same in different runs.
This can be achieved by selecting a new boundary from the bound-
aries that were not selected before). Hence, the predictions are dif-
ferent for different runs.

As given in Fig. 1, the bin boundary (B1) can be anywhere be-
tween the minimum value (0) and the maximum value (4L) of
the continuous target variable. If the target value, we want to pre-
dict is yp and if the bin boundary is at the left side of the yp, the pre-
dicted value is (4L + B1)/2. If the bin boundary is at the right side of
the yp, the predicted value is (0 + B1)/2. As the final result is the
mean value of all the predictions. If the number of runs is 1,
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Fig. 1. In the subfigure 1(top figure) the bin boundary B1 is at the left side of the
point to be predicted, yp, whereas in the subfigure 2 (bottom figure), the bin
boundary B1 is at the right side of yp.
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Fig. 2. (1) The first bin boundary B1 is at the left side of the yp. The second bin
boundary B2 is at the right side B1. (2) The first bin boundary B1 is at left side of the
yp. The second bin boundary B2 is at the left side B1. (3) The first bin boundary B1 is
at the right side of the yp. The second bin boundary B2 is at the right side B1. (4) The
first bin boundary B1 is at the right left side of the yp. The second bin boundary B2 is
at the left side B1.
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The predicted value is

1=4L
Z yp

0
ð4Lþ B1Þ=2 dB1 þ

Z 4L

yp

ð0þ B1Þ=2 dB1

 !
ð2Þ

The predicted value = yp/2 + L.
The general formula;

The predicted value ¼ yp=2þ ðymin þ ymaxÞ=4: ð3Þ

where ymin is the minimum value of the target and ymax is the max-
imum value of the target.

We discuss some of the properties of this result.

For yp = 0 the predicted value is L.
For yp = 2L the predicted value is 2L.
For yp = 4L the predicted value is 3L.

This behavior is different from the RvC with the equal-width
method with two bins as in this case target points near the mid
point of the range are predicted more accurately. One of the impor-
tant points about the predicted value function is that it is a contin-
uous function with respect to the target value. In other words, the
predicted values change smoothly with respect to the target value.
This is similar to the Geurts’s study (Geurts et al., 2006) about the
ERT, ‘‘extremely and totally randomized tree ensembles hence pro-
vide an interpolation of any output variable which for M ?1 is
continuous’’, where M is the size of the ensemble.

The MSE in this case is

ð1=4LÞ
Z 4L

0
ðy� ðy=2þ LÞÞ2 dy

� �
¼ 0:33L2: ð4Þ

For 4L = 100, the MSE is 208.3.
The MSE in this case is equal to the RvC with the equal width

discretization method. Hence, there is no advantage of the pro-
posed ensembles over single models with equal-width discretiza-
tion, if the number of bins is 2.

2.5. RvC with the equal-width discretization method with three bins

In this case the target variable is divided into equal width bins.
The size of these bins is 4L/3, bin boundaries are 4L/3 and 8L/3, and
mid points of these bins will be 4L/6, 2L and 20L/6. Hence, the pre-
dicted values will be 4L/6, 2L and 20L/6 depending upon in which
bin the point lies. The MSE for this case is

ð1=4LÞ
Z 4L=3

0
ðy� 4L=6Þ2 dyþ

Z 8L=3

4L=3
ðy� 2LÞ2 dy

 

þ
Z 4L

8L=3
ðy� 20L=6Þ2 dy

!
¼ 0:14L2

For 4L ¼ 100; the MSE is 87:5:

ð5Þ
2.6. RvC with ERD with three bins

In this case, there are two bin boundaries; B1 and B2. To calculate
the predicted value, we will calculate the mean value of all the pre-
dicted values by different models. There are two cases (Fig. 2);

1. The bin boundary B1 is left of the given point yp. The two condi-
tions are possible.
� The bin boundary B2 is at the right of B1. In this case, for dif-

ferent runs B2 is placed at different points between points B1

and 4L. This case is similar to two bins case with the bound-
aries; B1 and 4L. Hence, for a given B1, the mean value is
yp/2 + (4L + B1)/4 (by using Eq. (3)).

� The bin boundary B2 is at the left of B1. In this case, the pre-
dicted values is the center of the rightmost bin. It is (B1 + 4L)/
2, this value is independent of B2. Hence, the mean value for
a given B1 is (B1 + 4L)/2.

The probability of the first condition = (4L � B1)/4L.
The probability of the second condition = B1/4L.
As B1 can take value from 0 to yp. The mean value of this case (the
bin boundary B1 is left of the given point yp) is
1=yp

Z yp

0
ðyp=2þðð4LþB1Þ=4ÞÞðð4L�B1Þ=4LÞþððB1þ4LÞ=2ÞðB1=4LÞ
� �

dB1

� �
ð6Þ

¼ �y2
p=24Lþ 3yp=4þ L: ð7Þ
2. The bin boundary B1 is at right of the given point yp. The two
conditions are possible.
� The bin boundary B2 is at the right of B1. In this condition,

the predicted values is the center of the leftmost bin, which
is B1/2. Hence, the mean value, for a given B1, is B1/2.

� The bin boundary B2 is at the left of B1. In this condition, for
different runs B2 is placed at different points between points
0 and B1. This case is similar to two bins case with the range
of the target variable between 0 and B1. Hence, the mean
value, for a given B1 is, yp/2 + (0 + B1)/4
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The probability of the first condition = (4L � B1)/4L.
The probability of the second condition = B1/4L.
As B1 can take value from yp to 4L. The mean value of this case (the
bin boundary B1 is at right of the given point yp) is
1=ð4L� ypÞ
Z 4L

yp

ðB1=2Þð4L� B1Þ=4Lþ ðyp=2þ B1=4Þ

� ðB1=4LÞ dB1 ð8Þ

¼ �y2
p=24Lþ 5yp=12þ 2L=3 ð9Þ
Fig. 3. MSE, for the y = x problem, for different RvC methods with two bins.
The predicted value = The mean value of all the cases. = (The
mean value of case 1)(The probability of case 1) + (The mean value
of case 2)(The probability of case 2)

�y2
p=24Lþ 3yp=4þ L

� �
yd=4L

þ y2
p=24Lþ 5yp=12þ 2L=3

� �
ð4L� ypÞ=4L: ð10Þ

The predicted value ¼ yp=2þ 2L=3þ y2
p=8L� y3

p=48L2
� �

: ð11Þ
For yp = 0 the predicted value is 2L/3.
For yp = 2L the predicted value is 2L.
For yp = 4L the predicted value is 14L/3.

The MSE for this case is

1=4L
Z 4L

0
ðy� ðy=2þ 2L=3þ y2=8L� y3=48L2ÞÞ dy

� �
: ð12Þ

The MSE is 0.12L2 (by using simpson’s rule (Burden, 2010), for
4L = 100, the MSE is 75) which is better than RvC with the equal-
width method with three bins (MSE = 0.14L2 ). This proves that
the ensembles with the proposed ensemble method perform better
than single model with equal-width discretization for RvC, if the
number of bins is 3.

The same calculation can be followed to extend these results for
bins more than 3. It will be cumbersome but straightforward calcu-
lation. As 3 bins improve the performance of ERD ensembles more
as compared to single model with equal-width discretization, we
may suggest intuitively that the more bins will give more perfor-
mance advantage to the proposed ensemble method.

3. Weighted ERD method for two bins

In the RvC method under study, a classifier predicts a bin and
the mid point of the bin is the final prediction. In the ERD ensemble
method, the final result is the mean of all the values given by dif-
ferent classifiers. In other words, all the classifiers have same
weight in the final result. In RvC, we want a small bin size (how-
ever, very small size may lead to poor classification results) bea-
cuse in this case the mid point of the bin will be better
representative of the points in the bin. Hence, we have higher
probability of accurate result if the bin size is small. Hence, we
may say that the size of the bin is related with the probability of
getting the accurate result. As each classifier predicts a bin, in this
method, we assign 1/The size of the predicted bin, as the weight of
the classifier output. Hence, we multiply each predicted value with
its weight. All the results are then added. The sum is divided with
sum of all the weights to get the final result. If the bin boundary B1

is at the left of the point yp (Fig. 1), the predicted value is (B1 + 4L)/2
and the weight is inverse of the width of the bin which is (4L � B1).
If the bin boundary B1 is at the right of the point yp (Fig. 1), the pre-
dicted value is B1/2 and the weight is inverse of the width of the
bin which is B1. The predicted value for a given value yp
¼
R yp

0 ðððB1 þ 4LÞ=2Þ=ð4L� B1ÞÞ dB1 þ
R 4L

yp
ððB1=2Þ=B1Þ dB1R yp

0 ð1=ð4L� B1ÞÞ dB1 þ
R 4L

yp
ð1=B1Þ dB1

ð13Þ
¼
2L� yp þ 4L logð4L=ð4L� ypÞÞ
logð4L=ð4L� ypÞÞ þ logð4L=ypÞ

ð14Þ

At yp = 2L the predicted value is 2L, which is similar to ERD
ensembles.

At yp = 0 and yp = 4L, this is undefined, however at points, other
than 2L, this gives better prediction as compared to ensembles
without weight. MSE for different methods are given Fig. 3.

To calculate MSE, we used simpson’s rule of numerical integra-
tion (Burden, 2010) to caculate the integral and for 4L = 100,

1=4L
Z 4L

0
y� 2L� yþ 4L logð4L=ð4L� yÞÞ

logð4L=ð4L� yÞÞ þ logð4L=yÞ

� �2

dy

 !
: ð15Þ

The MSE is around 58, which is less than the MSE by using
ensembles without weight (the MSE is 208.3). We did not do the
calculation for 3 bins as the calculation became complicated. We
verified our theoretical results experimentally. We also did the
experiments with diferent number of bins to understand the
behavior of the proposed ensemble methods. In the next section,
we present our experimental results.
4. Experiments

We carried out experiments with y = x function. This is a uni-
formly distributed function. We generated 10,000 points between
0 6 x 6 100. 5000 points were used for training and 5000 points
were used for testing. We used unpruned C4.5 decision tree (J48
decision tree of WEKA software Hall et al., 2009) as the classifier.
The final result from the classifier was the mean value of the target
variable (y in this case) of all the points in the predicted bin. In the
results, we found that the classification error was almost 0. As in
these experiments all the conditions of our theoretical results were
fulfilled, we expected that experimental results should follow the
theoretical results. We carried out experiments with two bins
and three bins. The size of the ensemble was set to 100. The exper-
iments were conducted following 5 � 2 cross-validation (Diette-
rich, 1998). The average results are presented in the Table 1.
Results suggest that there is an excellent match in experimental re-
sults with theoretical results for two bins and three bins cases. We
also carried out experiments with 5, 10 and 20 bins. Results sug-
gest that the ratio of the average MSE of RvC with equal-width
discretization to the average MSE of RvC with ERD is increasing



Table 2
MSE in different cases for the nonlinear problem. For experimental results, the average results are given, s.d. is given in bracket.

The number of bins RvC equal-width bins (1) RvC with ERD (2) RvC eith ERD with weight (3) (1)/(2) (1)/(3)

2 4.41(0.23) � 106 3.68(0.18) � 106 1.63(0.06) � 106 1.19 2.26
3 2.14(0.09) � 106 1.45(0.06) � 106 4.22(0.21) � 105 1.48 3.43
5 7.26(0.53) � 105 4.17(0.31) � 105 8.14(0.44) � 104 1.74 8.84

10 1.72(0.11) � 105 7.29(0.64) � 104 1.44(0.03) � 104 2.35 11.94
20 4.41(0.36) � 104 1.44(0.15) � 104 3.05(0.19) � 103 3.06 14.22

Table 3
Details of datasets used in the experiments.

Name Number of attributes Size

Abalone 8 4177
Bank8FM 8 8192
Cart 10 40768
Delta_Ailerons 6 7129
Delta_Elevator 6 9517
House (8L) 8 22,784
House (16H) 16 22,784
Housing (Boston) 13 506
Kin8nm 8 8192
Puma8NH 8 8192
Puma32H 32 8192

Table 1
MSE in different cases for the y = x problem. For experimental results, the average results are given, s.d. is given in bracket.

The number
of bins

RvC with equal-width
bins (Theo.)

RvC with equal-width
bins (Exp.) (1)

RvC with ERD
(Theo.)

RvC with ERD
(Exp.) (2)

RvC with ERD with
weight (Theo.)

RvC with ERD with
weight (Exp.)

(1)/
(2)

(1)/
(3)

2 208.3 209.1(2.2) 208.3 210.3(3.1) 58.1 60.3(1.9) 0.99 3.48
3 87.5 90.3(1.7) 75 77.3(1.5) – 15.9(0.4) 1.17 5.66
5 – 33.1(0.8) – 18.6(0.4) – 2.9(0.2) 1.78 11.38
10 – 8.3(0.2) – 2.6(0.1) – 0.3(0.0) 3.19 27.67
20 – 2.9(0.1) – 0.4(0.1) – .04(0.00) 7.25 72.50
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with the number of bins. This suggests that there is more perfor-
mance advantage with ERD when we have higher number of bins.
This verifies our intuition that as we increase the number of bins
the performance advantage increases for ERD ensembles.

To study these ensembles, we also tested these ensembles on a
highly nonlinear sinusoidal univariate function, f(x) = 1 + x2

� 50xsin(x/2) with x is a real number (Fan et al., 2006). We gener-
ated 10,000 points between 0 6 x 6 100, 5000 points were used
for training and 5000 points were used for testing. All other exper-
iment setups were the same as the first experiment. Results are pre-
sented in Table 2. Results suggest that the proposed ensemble
methods performed better than a single model with equal-width
discretization. Hence, the proposed ensembles can be useful even
for a nonlinear problem.
Table 4
Experimental results for different methods for different datasets. The average results for R

Name of dataset RvC with ERD RvC with ERD with weight

Abalone 2.24(.05) 2.28(0.06)
Bank8FM 3.61(.11) � 10�2 3.64(.15) � 10�2

Cart 1.06(.02) 1.04(.02)
Delta_Ailerons 1.72(.03) � 10�4 1.74(.04) � 10�4

Delta_Elevator 1.52(.02) � 10�3 1.50(.02) � 10�3

House (8L) 3.12(.05) � 104 3.14(.04) � 104

House (16H) 3.51(.07) � 104 3.51(.07) � 104

Housing (Boston) 3.98(.09) 4.21(.08)
Kin8nm 0.17(0.01) 0.17(0.01)
Puma8NH 3.28(0.14) 3.25(0.17)
Puma32H 8.21(0.43) � 10�3 8.23(0.51) � 10�3
4.1. Comparative studies with benchmark datasets

We also carried out experiments with other popular datasets
used for regression studies. The information about the datasets is gi-
ven in Table 3. We also did experiments with REP regression trees
(available in WEKA software) with the Bagging procedure. The size
of the ensembles was set to 100 for all the experiments. The number
of bins was set to 10 for regression by classification methods. Results
(Root MSE) presented in Table 4 suggest the proposed ensemble
methods perform consistently better than a single model (RvC with
equal-width discretization method). This shows the effectiveness of
the our approach. The comparative study, with REP tree regression
trees with Bagging, suggests that our methods perform similar to
this method. This shows that the proposed methods are comparable
to the method that is developed specifically for the regression prob-
lems. Even though the theoretical study suggests that the weights
should be useful for the proposed ensembles, we did not see much
difference in our two methods. We investigated the reasons for this
behavior. We found that in our theoretical calculations, we assumed
that the classification error was 0, whereas in these experiments the
average classification errors for different datasets were varying
between 20% and 40%. This means we were giving weights to the
results which were wrong. Hence, weights are not providing the
advantage as expected.

In the proposed ensemble method, we used decision trees as the
classifier, however, we may use any other classifier. The number of
bins is an important variable, as a small number of bins lead to the
better classification. However, the value represented by the bins
oot Mean Square Error (RMSE) are presented. s.d. is given in the bracket.

RvC with equal-width bins Bagging with REP regression trees

2.89(0.08) 2.17(.05)
5.31(0.17) � 10�2 3.52(.12) � 10�2

1.46(0.06) 1.05(0.03)
2.75(0.05) � 10�4 2.03(0.03) � 10�4

1.91(0.03) � 10�3 1.55(0.02) � 10�3

4.12(.08) � 104 3.06(.03) � 104

4.62(.10) � 104 3.55(.05) � 104

5.23(0.12) 4.01(0.10)
0.24(0.02) 0.17(0.01)
4.50(0.16) 3.25(0.11)
1.2(.04) � 10�2 7.94(0.39) � 10�3
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will be less representative of the values. If the number of bins is
large, the number of points in each bin will be small; this leads
to the poor classification accuracy. However, the value represented
by the bins will be more representative of the points in the bins.
One may use cross validation to find out the best number of bins
for the best regression results. However, in the present setup, we
used the default value of bins as 10, and the results suggest that
even with the default number of bins, we got the results similar
to the models specifically designed for regression. This shows the
effectiveness of our proposed ensemble method. Hence, we may
use classifier models with the proposed ensemble method to solve
regression problems.
5. Conclusion

In supervised learning, the target values may be continuous or a
discrete set of class. The continuous target values (the regression
problem) can be transferred to a discrete set of classes (the classi-
fication problem). The discretization process is a popular method
to achieve this task. In this paper, we proposed two ensemble
methods for RvC problems. We showed theoretically that the pro-
posed ensemble methods performed better than a single model
with equal-width discretization method. This is also verified with
experiments. Experiments results also suggest that our methods
performed similar to the method developed for the regression pur-
pose. This suggests that the proposed ensemble method is useful
for regression problems. As the proposed method is independent
of the choice of the classifier, various classifiers can be used with
the proposed method to solve the regression method. In this paper,
we carried out experiments with the decision trees, however in
future we will do the experiments with other classifiers like naive
Bayes and support vector machines to study its effectiveness with
other classifiers. In this paper, in the weighted version of the algo-
rithm, we took weight as 1/(The size of the bin), however, other
weight schemes like 1/(The size of the bin)2 can be used. In future,
the effect of different weight schemes will be studied.
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