
Evaluating Budget of... 207JKAU: Sci., vol. 17, pp. 207-222 (2005 A.D. / 1425 A.H.)

207

Evaluating Budget of Overhead and Scalability
on High-Performance Computing Systems

ABDULLAH I. ALMOJEL

Computer Engineering Department
King Fahd University of Petroleum and Minerals

Dhahran, Saudi Arabia
almojel@mohe.gov.sa

ABSTRACT. High-Performance Computing Systems (HPCS) based on
parallel processing have the potential for satisfying the rapid growth
in computational requirements at economical costs. As such machines
grow in size, however, parallelization overhead grows in a manner
that can limit scalability. This work sheds some light on the sources,
dynamics, and magnitudes of the different types of overhead and their
impact on performance. Results are obtained through experimental
measurements of one of the NASA Earth and Space Sciences (ESS)
applications running on the Jet Propulsion Laboratory/Earth and
Space Sciences High-Performance Computing (HPC) systems.

Introduction

Experimental HPC systems based on parallel processing architectures offer the
opportunity to achieve orders of magnitude performance gain for existing prob-
lems as well as make feasible problems of much greater size and resolution. In-
formation derived from evaluation studies can enhance our understanding of the
potential growth path of high-performance computing and reveal possible dif-
ficulties that inhibit advances[12]. The Joint NSF/NASA Initiative on Evaluation
(JNNIE) is a national evaluation activity that involves NSF and NASA centers
and, thus, includes a large number of testbeds and applications characterization,
usability, macro performance, and micro performance[12]. In this work, which is
conducted in the framework of JNNIE, micro-performance only is considered.
Micro-performance is concerned with metrics and structured evaluation meth-
ods to discover the sources of performance degradation in the basic observable

Abdullah I. Almojel208

behavior of a machine, against an imaginary ideal. Examples of these sources
could be starvation, latency, contention, and overhead. Micro-performance
measurements collected here have focused on inter-processor communications
overhead, redundancy overhead, load-imbalance overhead, and time spent doing
useful work. This set of measurable quantities are referred to as the per-
formance budget. The target application was selected from NASA Earth and
Space Science (ESS) domain. The measurements presented here are from the N-
body simulations. The target high-performance computing platforms for this
study were the ESS Cray T3D and Intel Paragon at the NASA Jet Propulsion
Laboratory (JPL)[5,8,11].

This paper is organized as follows. Section 2 discusses the selected NASA
ESS application as well as the target high performance computing platforms for
this study. Section 3 discusses the type of overhead measurements collected un-
der our Performance Budget model. Sections 4 and 5 present the measurements
collected for the N-body code. Observations are derived in section 6, while con-
clusions are in section 7.

Application and System Scope

As mentioned earlier, the NASA Earth and Space Science (ESS) application
considered in this work is the N-body simulations. The study of physical sys-
tems by particle simulation is called the many-body or the N-body problem[4,7].
N-body simulations have been used to study a wide variety of astrophysical sys-
tems during the past years, ranging from small clusters of stars to galaxies and
the formation of large-scale structure in the universe. Such studies are con-
ducted in celestial mechanics, plasma physics, and fluid mechanics, as well as
in semiconductor device simulation.

The classical N-body problem simulates the evolution of a system comprising
n bodies (particles), under the influence of forces exerted on each body by the
whole system. Typical domains of application include (i) astrophysics, where
the bodies can be viewed as stars or planets in a galaxy, (ii) molecular dynam-
ics, where the bodies are molecules or atoms, and (iii) plasma physics, where
the bodies are ions or electrons. The example problem we use in this paper is a
simulation of interacting galaxies from astrophysics. The problem studies how
the positions and velocities of stars in the galaxies evolve with time under the
gravitational forces that the stars exert on one another[2,4,6,7,9]. This application
was ported to an Intel Paragon and Cray T3D and measurements were collected
to study overhead and scalability.

Evaluating Budget of... 209

Target Systems

The JPL/ESS Intel Paragon and Cray T3D were used to conduct this study.
The Intel Paragon has a total of 64 nodes organized into a 16 × 4 mesh of which
54 are compute nodes and 8 are service nodes[11]. Each node, an Intel GP node,
is essentially a separate computer, with one compute and one communication
i860 processors. Each of the 56 compute nodes has 32 Mbytes of memory. The
service nodes include: 4 I/O nodes with 32 Mbytes memory and a 4.8 Gbyte
RAID each, 1 HIPPI node with 32 Mbytes memory, 1 user service node with 32
Mbytes memory, and 1 boot node with 32 Mbytes memory and a 4.8 Gbyte
RAID. The peak performance (using 56 nodes) is 5.6 Gflops in single precision
with an aggregate memory space of 1.8 Gbytes and aggregate online disk capac-
ity in excess of 20 Gbytes. The programs can be developed in C or FORTRAN
that are supported by NX library routines for communication and syn-
chronization purposes. The JPL Intel Paragon is operated as applications de-
velopment platform, with interactive access to all of the compute nodes.

The Cray T3D is a MIMD system with physically distributed but globally ad-
dressed memory. The JPL Cray T3D has a Cray Y-MP as its host system and cur-
rently consists of 256 processors each with 2 Mwords (16 MB) of DRAM mem-
ory[5]. About 25% of the memory is required by the UNICOS microkernel,
therefore, the users can expect to have 12 MB of memory for program and data.
Each PE is a 64-bit DEC Alpha microprocessor with a frequency of 150 Mhz ca-
pable of achieving 150 MFLOPS. The memory interface between the processor
and the local memory extends the local virtual address space to a global address
space. The Alpha processor has a direct-mapped data cache organized into 256
lines with 32bytes per line. Programs can invalidate the local cache as needed to
maintain the coherence. Also, remote data entering a processor�s local memory
can invalidate the corresponding cache line. The system is space-shared into par-
titions where the numbers of processors are powers of two. A node consists of
two processors sharing a network support logic. All processors are connected by
a bi-directional 3-D torus system interconnect network. This topology ensures
short connection paths and high bisectional bandwidth. Channels between nodes
are two bytes wide and the peak inter-processor communication rate is 300 MB/
sec in every direction through the torus. The system software includes FOR-
TRAN (a superset of FORTRAN 77 including many FORTRAN 90 array syntax
statements), C, and C++ compilers as well as tools for application performance
analysis and parallel code debugging. The PVM is currently supported as are
some lower level Cray libraries for passing data and messages among processors.

In order to allow accurate measurements of communications, the message-
passing programming model was used. All applications were developed in C
and augmented with the appropriate NX or PVM communication calls. The ap-

Abdullah I. Almojel210

plications used the �single program, multiple data� (SPMD) programming mod-
el. In this model, the same program runs on each node in the application, but
each node is an independent computer, one can also use other programming
models. One example is the �manager-work� model, in which a �manager� pro-
gram starts up several �worker� programs on other nodes, then gathers and in-
terprets their results.

In our implementations, the N-body used the manager-worker model. With
this model, the manager creates the tree where all spatial information about all
particles is inserted. Then, the manager broadcasts the tree to all nodes. Each
node manipulates only a subset of the particles in order to compute the essential
forces that interact with those particles. Therefore, each node does its work
without access to data that is being held by other nodes. Each �worker� node
updates the information of all of its particles. The �worker� node, then, sends its
updated particles to the �manager� node in order to create an updated tree that is
to be used in the next time-step.

N-Body Problem and the Barnes-Hut Method

The general N-body problem may be stated as the following set of ordinary
differential equations[13]:

dxi / dt = vi (1)

mi . dvi / dt = Σj≠i Fij (2)

In astrophysical simulations, the force term, Fij is the Newtonian gravity:

 Fij = (G · mi · mj · rij) / | rij |
3 (3)

Where G is the universal gravitational constant, mi and mj are the masses of
particles i and j, and rij is the position vector separating them.

The gravitational force is �long-range� meaning that there is no cut-off point,
beyond which the force may be considered negligible. In principle, it is nec-
essary to evaluate the entire sum on the right-hand side of (2) at each time step
of the time integration. Naively, this requires O(N2) operations at each time
step[13].

The Barnes-Hut (BH) algorithm[3] is one of a number of algorithm[2,3,6,7,9]

that uses a multiple expansion and a hierarchical data structure to reduce the
complexity of computing long-range interactions like gravity. The multipole ex-
pansion allows one to treat a collection of bodies as a point mass (perhaps with
quadrupole and higher moments) located at the center of mass. In Fig. 1, the
force on point xi may be evaluated approximately as:

Evaluating Budget of... 211

Fi = Σj {(G · mi · mj · rij) / | rij |
3 } ≈ (G · mi · M · Rcm) / | Rcm |3 (4)

The quality of the approximation in (4) is a decreasing function of the ratio:
b/|Rcm|, where b is the radius of the collection of bodies. In the BH algorithm,
multipole moments are computed for cubical cells for an oct-tree of variable
depth. The tree is constructed at each time step with the following properties:

1. The root cell encloses all of the bodies.

2. No terminal cell contains more than m bodies.

3. Any cell with m or fewer bodies is a terminal cell.

A typical two-dimensional BH tree with m = 1 is shown in Fig. 2.

FIG. 1. Approximation of particles by a single point mass.

Group of particles
Equivalent particle

Rcm

Far enough away

Point of evaluation

Xi

FIG. 2. A 2-D particle distribution and its quadtree.

Abdullah I. Almojel212

To compute the force on a body, one traverses the tree starting at the root.
Any time a cell with a sufficiently small value of b/|Rcm| is encountered, the
multipole approximation is utilized. Thus, distant cells, which comprise many
individual bodies, may be approximated in unit time. The resulting algorithm,
when applied to all bodies, requires O(N log N)[13] operations to evaluate the
forces on all N bodies.

In the BH method, the force-computation phase within a time-step is ex-
panded into four phases:

1. Building the tree: the current positions of the particles are first used to de-
termine the dimensions of the root cell of the tree. The tree is then built by add-
ing particles one by one into the initially empty root cell, and subdividing a cell
into its four children as soon as it contains more than a single particle.

2. Computing cell centers of mass: An upward pass is made through the tree
starting at the leaves, to compute the center of mass of internal cells from the
centers of mass of their children.

3. Computing forces: The force-computation phase consumes well over 90%
of the sequential execution time in typical problems, and is described in detail
below. The tree is traversed once per particle to compute the net force acting on
that particle. The force-computation algorithm for a particle starts at the root of
the tree and conducts the following test recursively for every cell it visits: If the
cell�s center of mass is far enough away from the particle, the entire subtree un-
der that cell is approximated by a single particle at the cell�s center of mass, and
the force this center of mass exerts on the particle is computed. If, however, the
center of mass is not far enough away from the particle, the cell must be
�opened� and each of its subcells visited.

4. Updating particle properties: Finally, the force acting on a particle is used
to update such particle properties as acceleration, velocity and position. This
phase does a constant amount of work per particle, so its computational com-
plexity is O(N)[14].

Conceptually, the main data structure in the application is the Barnes-Hut
tree. Since the tree changes every time-step, it is implemented in the program
with two arrays: an array of bodies that are leaves of the tree, and an array of in-
ternal cells in the tree[1]. Among other information, every cell has pointers to its
children, and it is these pointers that maintain the current structure of the tree.
The structure representing a body holds 56 bytes of data in two dimensions.
There is also a separate array of pointers to bodies and one of pointers to cells.
These arrays are used by the processors to determine which bodies and cells
they own. Every processor owns an equal contiguous chunk of pointers in these

Evaluating Budget of... 213

arrays, and each chunk is larger than the maximum number of bodies of cells a
processor is expected to own. The total data space of the program is linearly
proportional to the number of bodies for both uniform distributions (balanced
tree) and non-uniform ones.

The domain decomposition technique used here is costzones partitioning[14].
In this method, the summation of works associated with all particles is used to
divide the workload equally among the processors. This technique is very sim-
ple and does not have much computational overhead associated with it, when
compared with other popular methods, such as the Orthogonal Recursive Bi-
section (ORB)[13,15].

The costzones technique takes advantage of another key insight into the hier-
archical methods for classical N-body problems, which is that they already have
a representation of the spatial distribution encoded in the tree data structure.
Consequently, one can partition the tree rather than partitioning the space direct-
ly. In the Costzones scheme, the tree cell�s children laid out from left to right in
increasing order of child number. The cost of every particle, which is the total
amount of interactions between the particle and all others, as counted in the pre-
vious time step, is stored with the particle. Every internal cell holds the sum of
the costs of all particles that are contained within.

The total cost in the domain is divided among processors so that every pro-
cessor has a contiguous, equal range or zone of costs (hence the name of cost-
zones). For example, a total cost of 1000 interactions would be split among 10
processors so that the zone comprising costs 1-100 is assigned to the first pro-
cessor, zone 101-200 to the second, and so on. Which costzone a particle be-
longs to is determined by the total cost up to that particle in an in order traversal
of the tree.

 In our implementation, building the tree is done at a manager node. After
building the BH tree, the manager broadcasts the BH tree to the worker nodes.
Therefore, an identical copy of the BH tree would be available in each pro-
cessor.

Since each processor has a subset of the bodies and a whole copy of the BH
tree, there is on more need for inter-processor communication. In fact, the orig-
inal serial code for force evaluation may be used completely unchanged. The
parallel algorithm will produce results identical to the serial algorithm, except
for a very small amount of round-off error which results from the non-
associatively of floating point operations.

Abdullah I. Almojel214

Performance Budget

The intended performance measurements are designed to correlate the system
scalability to parallel overhead, from the user/application perspective. There-
fore, our performance budget model relies on application instrumentation and
breaks the overall parallel execution session into non-overlapping useful pro-
cessing time and a number of overhead components. Desirable architectural fea-
tures, such as the ability to hide latency, as well as good parallel programming
practices, such as the use of asynchronous rather than synchronous communica-
tions, are therefore favored by this model. The types of overhead identified here
are the average communication overhead, imbalance overhead and redundancy
overhead. Each of these types of overhead is reported as a percentage of the par-
allel execution time. The general programming model used was the SPMD
model, due to its popularity. To facilitate the communications overhead meas-
urements, the code was developed using the message-passing paradigm.

The communications overhead is measured directly and averaged over all
processor used for the computation. A communication transaction is measured
from the point of initiating the communication system call, till the call returns.
Imbalance overhead was obtained by averaging the time difference between the
completion time at each processor and the minimum completion time over all
processors. Redundancy overhead refers to the additional operations needed to
facilitate the parallelization. Two sources of redundancy are differentiated here.
The first is the parallel duplication, in which the same operation is duplicated
using the same data values at all processors. The second is the unique re-
dundancy, in which different or similar but not identical processing is done to
allow the parallelization. Example of the duplication redundancy is the in-
itialization of a loop counter by the same value at all processors. Example of the
unique parallelization redundancy is operations that pertain to domain de-
composition, where each processor tries to figure out which part of the data it
will be working on. Given n processors, (n-1) copies of the duplication re-
dundancy and all unique redundancy are averaged over all processors to pro-
duce the redundancy overhead. All timing measurements were wall-clock tim-
ing and timed activities were selected such that no global knowledge of time
was needed.

Measurements on the Intel Paragon

A number of experiments were conducted to reveal the behavior of the N-
body application with respect to scalability and overhead. These were per-
formed for different input data sizes as well as for different number of pro-
cessors. Figure 3 summarizes the scalability measurements. In this figure, N-
body scales nicely with the increasing number of processors, particularly when

Evaluating Budget of... 215

large data sets are used. This is consistent with the intuition driven from the
way the parallel program works. In the used parallel program, building the tree
was done sequentially at the manger node, recall the manager-worker model.
This sequential part requires traversing the tree only once. On the other hand,
computing the forces at each body was parallelized, which requires N traverses
of the tree in the sequential case. With such N:1 growth ratio in the parallel to
the sequential parts, near-linear speed up is expected. However, due to the ris-
ing communications cost, as the size of the machine grows and processors be-
come more distant from one another, a gradual drop in efficiency is observed.

Figures 4 through 6 report the overhead measurements for 1k, 4k, and 32k
bodies, respectively. As the number of processors increase, a corresponding in-
crease of communications overhead an imbalance take place, Figure 4. While
the costzone decomposition guarantees equal computational effort by all pro-
cessors, the imbalance overhead continues to increase as more processors are
used. This is a side effect due to the use of the manager-worker model, as dis-
tance variability from the manager increases with the increased number of
workers. However, as the input data size increases, most of his overhead is
amortized nicely, Fig. 4 to 6. This is due to the rapid growth in the parallel part
of the other had, has been minimal in all cases.

20

18

16

14

12

10

8

6

4

2

0

1 K

2 K

4 K

8 K

16 K

32 K

P
er

fo
rm

an
ce

4 Proc 8 Proc 16 Proc 32 Proc

No. of Processors

 FIG. 3. Scalability of the N-body on the Intel Paragon.

Abdullah I. Almojel216

120

100

80

60

40

20

0
4 Proc 8 Proc 16 Proc 32 Proc

Number of Processors

P
er

fo
rm

an
ce

 B
ud

ge
t

useful works

redundancy

imbalance

communications

120

100

80

60

40

20

0
4 Proc 8 Proc 16 Proc 32 Proc

Number of Processors

P
er

fo
rm

an
ce

 B
ud

ge
t

useful works

redundancy

imbalance

communications

FIG. 4. N-body performance budget at 1k bodies.

FIG. 5. N-body performance budget at 4k bodies.

Evaluating Budget of... 217

Measurements on the Cray T3D

On the Cray T3D, N-Body simulation presents a better overall �picture�. Al-
though the NX routines are considered to be superior to PVM calls. Clearly,
processor and network speed are dominant factors. Figure 7 indicates that the
scalability is drawn by the communication component, a fact supported by per-
formance budget figures as well, see Fig. 8, 9 and 10. When the ratio of the data
to be processed to the number of processing nodes to be communicated is large
enough, the code scales quite well, see Fig. 7. Communication time exhibits a
smooth slope with increasing data sizes. Consequently, the performance budget
figures include more portions of useful work than ones on the Intel Paragon.
Characteristically, the execution across the processors are again well-balanced
and redundantly is negligibly small.

Observations

In addition to the presented measurements, our day-to-day experience through-
out this study has revealed many issues. We sum the experiences and observa-
tions with the following conclusions.

Effect of Programming Model: The use of the manager-worker model in the
N-body code has resulted in many experiences. In N-body, the model used re-
sulted in some imbalance overhead, although the workload was intentionally
balanced using the costzone method. The observed imbalance was due to the

120

100

80

60

40

20

0
4 Proc 8 Proc 16 Proc 32 Proc

Number of Processors

P
er

fo
rm

an
ce

 B
ud

ge
t useful works

redundancy

imbalance

communications

FIG. 6. N-body performance budget at 32k bodies.

Abdullah I. Almojel218

18

16

14

12

10

8

6

4

2

0
4 Proc 8 Proc 16 Proc 32 Proc 64 Proc 128 Proc

Number of Processors

P
er

fo
rm

an
ce

1 K 2 K
4 K 8 K
16 K 32 K
128 K

FIG. 7. Scalability of the N-body on the Cray T3D.

120

100

80

60

40

20

0
4 Proc 8 Proc 16 Proc 32 Proc 64 Proc 128 Proc

Number of Processors

P
er

fo
rm

an
ce

 B
ud

ge
t

communications imbalance

redundancy useful works

FIG. 8. N-body performance budget at 1k bodies.

Evaluating Budget of... 219

120

100

80

60

40

20

0
4 Proc 8 Proc 16 Proc 32 Proc 64 Proc 128 Proc

Number of Processors

P
er

fo
rm

an
ce

 B
ud

ge
t

communications imbalance

redundancy useful works

FIG. 9. N-body performance budget at 4k bodies.

120

100

80

60

40

20

0
4 Proc 8 Proc 16 Proc 32 Proc 64 Proc 128 Proc

Number of Processors

P
er

fo
rm

an
ce

 B
ud

ge
t

communications imbalance

redundancy useful works

FIG. 10. N-body performance budget at 32k bodies.

Abdullah I. Almojel220

focal point of communication created by the manager and the variability of the
communication distances from arbitrary nodes to the manager.

Effect of Memory Management: Again, super-linear scalability can be ob-
served due to improved caching and less frequent paging in parallel system. It
would be of interest to investigate a scalability model that takes such memory-
related factors into account.

Effect of Programming Style: Parallel program performance seems to be un-
usually susceptible to programming style. We have already addressed the effect
of using different programming models. In addition, it has been noted during
this study that depending on the programmer, some type of overhead can be-
come more dominant than others. In fact, in many cases, reducing one type of
overhead. For example, in many cases communications can be replaced by
redundancy and vise versa. A general rule, however, is that redundancy is
cheaper than communications, in most cases.

Physical Effects: One phenomenon that was observed in the Intel Paragon
was that the speed of a specific problem might differ based on which partition
of the machine is used. This was the case even when the same number of nodes
and the topology of the partition are maintained. After repeated measurements
and investigations, it was found that processors that are physically closer to the
cooling system tend to run slower that those that are farther away[10]. Up to 7%
variability in exertion time was observed and attributed to this phenomena.

Conclusion

In this study some of the sources of overhead were identified and measured for
a real application selected from NASA ESS domain. Among the observed sources
of overhead are the programming model, programming style, and the communica-
tions patterns. With the sophistication of multicomputers and in the light of the
lack of comparably powerful compiler technology, parallel machines are much
less forgiving than unprocessed environments. Subtle changes in programs can
increase or decrease overhead significantly. Some types of overhead can be re-
duced by following better programming practices and some can be reduced by
converting them to less costly overhead activities. The dominant type of overhead
is communications and could be in many cases a real challenge to scalability.
While it is not considered a good programming practice, duplication redundancy
can effectively help reduce the effect of communications.

Acknowledgment

I would like to acknowledge the King Fahd University of Petroleum and Min-
erals for their support. This work has been supported by the Center of Ex-

Evaluating Budget of... 221

cellence in Space Data and Information Sciences at NASA Goddard Space
Flight Center under Grant No. NAS5-30428. This work has been supported by
NASA High-Performance Computing and Communications (HPCC) program
through CESDIS/USRA, Grant No. NAS5-30428.

References

[1] Almojel, A.I., �The Implementation and Performance Evaluation of N-body Gravitational
Simulation Algorithm on High-Performance Computers�, J. Computers & Electrical En-
gineering, vol. 26, no. 3-4, pp. 297-316, April (2000).

[2] Appel, A.W., �An Efficient Program for Many-Body Simulation�, SIAM J. Sci. Stat. Com-
puting, vol. 6, (1985).

[3] Barnes, J. and Hut, P., �A Hierarchical O(N log N) Force-Calculation Algorithm�, Nature,
vol. 324, pp. 446-449, (1986).

[4] Birdsall, C.K. and Langton, A.B., Plasma Physics Via Computer Simulation, McGraw-Hill
Inc., New York, (1985).

[5] Cray T3D User�s Guide, (1994).
[6] Greengard, L. and Rokhlin, V., �A Fast Algorithm for Particle Simulations�, J. Comp.

Phys., vol. 73, pp. 325-348, (1987).
[7] Hockney, R.W. and Eastwood, J.W., Computer Simulation Using Particles, Adam Hilger,

(1988).
[8] http://ess.jpl.nasa.gov.
[9] Katzenelson, J., �Computational Structure of the N-Body Problem�, SIAM J. Sci. Stat.

Comput., vol. 10, no. 4, pp. 787-815, (1989).
[10] Meajil, A.I., �An Implementation of a Tree-Based N-Body Algorithm on Message-Passing

Architectures�, Applied Parallel Computing: Industrial Computation and Optimization, Lec-
ture Notes in Computer Science (1184), J. Wasniewski, et al. (Eds.), Springer, pp. 504-514,
September (1996).

[11] Paragon User�s (312489-002), Intel Corporation, Beaverton, Oregon, (1993).
[12] Poo, G.S. and Goscinski, A.M., �Introduction to Special Issue on Network-Based Parallel

and Distributed Computing�, Journal of Computer Communications, vol. 22, no. 11, p. 987,
July (1999).

[13] Salmon, J., �Parallel N Log N N-Body Algorithms and Applications to Astrophysics�,
COMPCON, Spring (1991).

[14] Singh, J.P., Parallel Hierarchical N-Body Methods and Their Implications, Ph.D. thesis,
Stanford University, February (1993).

[15] Zhiling, L., Valerie, T. and Grey, B., �A Novel Dynamic Load Balancing Scheme for Par-
allel Systems�, J. Parallel and Distributed Computing, vol. 62, no. 12, pp. 1763-1781, De-
cember (2002).

Abdullah I. Almojel222

©�d�UF*«® �UOI�« WO�UJ�≈Ë WO�d��«Ë l�u��« WOK�U� Èb* W��«u� rOOI�
w�UF�« ¡«�_« «� WO�u�U(« WLE�ú�

q�F*« rO�«d�≈ tÒK�«b��
Ê�UF*«Ë �Ëd��K� bN� pK*« WF�U� , w�ü« V�U(« W�bM� r��

W��uF��« WO�dF�« WJKL*« − Ê«d���NE�«

w��«Ë HPCS w*U??F�« ¡«�_« «� W?O�U??�?(« W??LE�_« Ê≈ ÆhK�??�?�*«
 U?�KD?�*« W?O?�K� v?K� ��b?� U?N�b� W��«u??�*« W?'U?F*« W??OKL?� vK� b?L??�?F�
Ê√ U?LJ� Æ W��U?B�?�« W?HKJ�� p��Ë , l�d?��« u?LM�U� e?O9 w��« W?O�U�?(«
u?LM� Í�«u?��« w�U?L?�≈ ÊS?� , U?N?L?�?� w?� d?�J� �e?N?�_«Ë ôü« pK�
Y���« «c�Ë Æ ©�d�UF*«® W�Ëb'«Ë �UO?I�« WO�UJ�≈ s� b% Ê√ sJ1 WI�dD�
 U?�ËdB*« �uM?� ÂU�?�√Ë U?OJO�UM��Ë ��U?B?� vK� ¡u?C�« iF� wIK�
�ö??� s� ZzU??�M�« vK� �u??B??(« sJ1 Æ ¡«�_« vK� U�d??O�Q�Ë W??HK�??<«
vK� ¡UCH�« ÂuKF� U�U� W�U�Ë UN�d�√ w��« UI?O�D�K� WO��U���« U�UOI�«
ÂuK� Ø ÀUHM�« l�b�« qLF� w� HPC w*UF�« ¡«�_« «� WO�U�(« WLE�_«

Æ ¡UCH�«Ë ÷�_«

