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ABSTRACT. In this paper, four symbolic computing algorithms are de-
veloped for time series expansions of the following two-body prob-
lem: The Lagrange f and g functions, radial distance, the normalized
inner product of the position and velocity vectors, and the eccentric
anomaly of elliptic motion. To obtain these expansions once and for
all, we proposed a unified approach in which Lagrange�s fundamental
invariants were used to develop time series solution of single harmon-
ic oscillator equation.

1.  Introduction

It is undoubtly true that, the analytical formulae of space dynamics usually offer
much deeper insight into the nature of the problems to which they refer. More-
over, the nowadays existing symbols used for manipulating digital computer
programs, opened the gate towards establishing new branch of space dynamics
known as the algorithmization of space dynamics [Brumberg, 1995]. A great ef-
fort has been devoted up to now, and is being devoted at present to develop
symbolic computing algorithms for some problems of space dynamics [e.g.
Brumberg, 1995; Sharaf and Saad, 1997; Sharaf, et al., 1998; Vinti, 1998; Sha-
raf and Banajah, 2001].

Coping with this important line of recent approach, the present paper is de-
voted to establish four symbolic computing algorithms for time series expan-
sions of the following two-body problems: The Lagrange f and g functions, ra-
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dial distance, the normalized inner product (denoted by σσσσ) of the position and
velocity vectors, and finally, the eccentric anomaly of elliptic orbits. The first
three expansions are universal in the sense that, they could be used for any of
the conic orbits (elliptic, parabolic, or hyperbolic) while the last expansion is
used only for elliptic orbits.

To obtain these expansions once and for all, we proposed a unified approach,
in which Lagrange�s fundamental invariants were used to develop time series
solution of harmonic oscillater equation of the form q̈+∈ q = 0.

2. Basic Formulations

2.1. Two-Body Formulations

● The equation describing the relative motion of the two bodies of masses m1
and m2 and in rectangular coordinates is 

where µ is the gravitational parameter (universal gravitational constant times
the sum of the two masses) →r an v  are the position and velocity vectors given
in components as 

are the unit vectors along the coordinate axes x, y and z re-
spectively and 

Equation (2.1) is unchanged if we replace r→ with �r→. Thus Equation (2.1)
gives the motion of the body of mass m2 relative to the body of the mass m1, or
the motion of m1 relative to m2. Also if we replace t with �t, Equations (2.1) un-
changed.

● At any time, r→       and v→     can be expressed as

 

where (L, T) are the pericenter coordinates of one of the bodies in its orbit
about the other body and (L· , T

· 
) are their time derivatives. These coordinates

are of different forms for the different types (elliptic, parabolic, hyperbolic ) of
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the two body motion [Danby, 1988] and are not needed to be specified here.

The unit vectors i
→→→→

e  , i
→→→→    

p and i
→→→→    

h are selected such that, i
→→→→    

e and i
→→→→    

p in the body�s

own orbital plane with i
→→→→

e in the direction of pericenter, while i
→→→→    

p and i
→→→→    

h are cho-
sen to make the coordinate system right-handed.

● Among the integrals of the two-body problem are the conservation of an-
gular momentum vector h

→→→→            

where,

and the energy integral

where p and a are respectively, the semi-latus rectum and the semi-major axis
of the orbit. From Equations (2.5), (2.6) and (2.7) we get 

2.2. Lagrange�s Fundamental Invariants

Lagrange�s fundamental invariants [Battin,1999] ∈∈∈∈  , λλλλ and ψψψψ are defined as

where 〈A
→→→→    

, B
→→→→    

〉  is used to denote the scalar product of two the vectors A
→→→→

 and B
→→→→

.
The quantities ∈∈∈∈ , λλλλ and ψψψψ  are �invariant� because they are independent of the
selected coordinate system and �fundamental� because they form a closed set
under the operation of time derivative, where
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3. Solution by Power Series

The basic differential equations that concerns us in the subsequent analysis
are 

Together with Equations (2.6) written as 

Where ∈∈∈∈ , λλλλ and ψψψψ are defined by Equations (2.10). Power series solutions for
the above set of differential equations could be developed as follows [Bat-
tin,1999].

Expand each of the functions q, ∈∈∈∈ ,     λλλλ  and ψψψψ  in a Taylor�s series in time

 

The procedure now is to substitute the four series given by Equations (3.5)-
(3.8) into the four differential Equations (3.1)-(3.4) and then solve for the co-
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which converts the product of two infinite series to a double summation. The re-
sulting recurrence relations are 

The starting values for these recurrence relations are q0 ≡ q(t0) ; q1 = q·(t0),
∈∈∈∈ 0 ≡ ∈∈∈∈  (t0) , λλλλ0 ≡ λλλλ(t0) and ψψψψ0 ≡ ψ(t0). The first two values q0 and q1 being
known for any given problem, while the other starting values ∈∈∈∈ 0 , λλλλ0 and ψψψψ0
could be computed from the initial values r→→→→0 ≡ r→→→→(t0) and v→→→→0 ≡ v→→→→ (t0),  so we get
from Equations (2.5) the values

where

Using the symbolic manipulation capability of the software package Math-
ematica, we generate the coefficients qj ; j = 2,3, ... 10, in terms of the known
initial values and and are listed in Table 1.

In the following sections, applications of the above formulations will be con-
sidered. 
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TABLE 1. Symbolic expresions of the gj coefficients ; j = 2, 3, ... 10.
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4. Symbolic Computation of Lagrange f and g Functions

4.1. Definition

It is well known that, the Taylor series expansion of the coordinates of a body
in Keplerian motion about the attracting mass can be written as

where r→→→→        is the position vector at time t, while r→→→→0  and v→→→→0 are the position and ve-
locity vectors at the initial time t0. The coefficients f and g are functions of t-t0
and are called Lagrange f and g functions.

From Equation (4.1) we get

where v→→→→   is the velocity vector at time t.

4.2. Functional Relations

Lagrange functions f and g and their time derivatives satisfy some functional
relations are following 

1 � For any two point r and r0 on any type of the two-body motion at the
times t

→→→→        and t0, then 
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(4.1) and (4.2) for the left hand side. 
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● Using these two expressions of the unit vectors i
→→→→    

e and i
→→→→    

p into Equations
(2.5) and (2.6) for r→→→→ and v→→→→ at time t and then comparing the coefficients of r→→→→0
and v→→→→0 of the resulting equations with those of Equations (4.1) and (4.2), we get 

3 � For any three points r→→→→     

0, r→→→→  

1 and r→→→→  

2 on any type of the two-body motion at
the three times t0, t1 and t2, then 

where for example, f21 is Largrange f function expressed as a function of t2-t1.
By using Equations (4.4) and (4.5) into the right hand sides of Equations (4.6)
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that is the functions f and g each satisfy the differential Equation

with the initial conditions 

4.3. Symbolic Expressions for f and g Functions

Since Equation (4.9) is exactly the same as Equation (3.1), then according to
Equation (3.5), f and g could be represented as power series in (t-t0) as 

where the starting values of the recursion algorithm for the coefficients are
those given by Equations (3.14),(3.15) and (3.16) together with (see Equation
(4.10) )

With above starting values, the general procedure of Section 3 yields for the
coefficients fj and gj, j = 0,1, ... 10 the symbolic expressions listed respectively
in Tables 2 and 3.

Ten of the fj and gj coefficients are sufficient for any application, this is
because, the principle application of Equations (4.1) and (4.2) has been in orbit
determination problems where the time interval (t-t0) is small. On the other
hand, for the case in which the time interval is large we can use the process of
repeat decremention of the time interval several times as mentioned after Equa-
tion (4.8), so each time interval could be made as small as we desired. 

Finally, it should be mentioned that, the usage of the above algorithm of the f
and g series for the initial value problem (the determination of r→→→→  and v→→→→  at time t
from r→→→→ 0 and v→→→→ 

0 at preceding time t0 from Equation (4.1) and(4.2) ) is efficient
due to some factors, Such as :

● Its recurrent nature facilitates the computations of any number of the co-
efficients needed for accurate predictions of r→→→→  and v→→→→ .
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TABLE 2. Symbolic expresions of the fj coefficients ; j = 0, 1, ... 10.
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TABLE 3. Symbolic expresions of the gj coefficients ; j = 0, 1,2, ... 10.
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● The solution of  r→→→→ and v→→→→ does not need the solution of Kepler�s equation
and its variants for parabolic and hyperbolic orbits.

● The algorithm is universal in the sense that it could be used for any of the
conic orbits.

● As we mentioned above, the algorithm could be used whatever the length
of the time interval (t-t0) may be.

5. Other Applications

5.1. Symbolic Computation of the Radial Distance

Radial distances are vital to a class of orbit determination problems which de-
pend on range measurements [Escobal, 1976] .

The polar equation of the relative motion of the two-body problem is given as

where θ the true anomaly and                     therefore Equation (5.1) could be
written as

Let

q = r � p , (5.3)

since p is constant for the two body problem, then from Equation (5.2), it is
clear that q (Equation (5.3)) satisfies the differential Equation (3.1). Then by
using the technique of Section 3 and Equation (5.3) we can develop power se-
ries expansion for the radial distance r as 

where q�s are computed from Equations (3.10) to (3.13) with the initial condi-
tions (3.14) to (3.17). It remains for the present algorithm to determine q0 and
q1. Since 

then, the power series expansion for becomes 

  ̇̇ – ˙ – /  ,r r rθ µ2 2= (5.1)
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˙  ,

˙̇ –   .

q
r

q q

= −

= ∈

υ
µ

µ2

Now, the symbolic expressions of qj ; j ≥ 2 are those of Table 1. The values
of q0, q1, ∈∈∈∈ 0 , λλλλ0 and ψψψψ0 needed for these expressions could be calculated from
the initial values r→→→→0 and v→→→→0 by the following algorithm .

5.1.1 Computational Algorithm 1

Finally, it should be mentioned that, the above symbolic expressions are uni-
versal in the sense that it could be used for any conic orbits.

5.2. Symbolic Computation of    σσσσ

σ    is defined by

Differentiating Equation (5.5) with respect to t we get

 

From Equation (2.1) it follows that

then Equations (5.6) and (5.7) become

  

1 2

3 4

5 6

0 0
2

0
2

0
2

0 0
3

1 0 0 0 0 0 0 0 0 1 0

0 0
2

0
2

0
2

0
2

0

1
2

 –    – /  

 –  ˙ ˙ ˙ /  – /  

 –  ˙ ˙ ˙ /    –  ˙

 

r x y z r

q x x y y z z r q r

x y z r h yx

= + +( ) =

= + +( ) =

= + +( ) =

; ;

; ;

;

ε µ

λ

ψ ′′

= − =

= + +( )

z z y

h z x x z h x y y x

q r h h h

y z

x y z

0 0 0

0 0 0 0 0 0 0 0

0 0
2 2 2

7 8

9

– ˙  

 –  ˙ ˙    –  ˙ – ˙   

 –  – /   

 ;

;  ;

;  10 –  .µ END

   
σ

µ
= =1 r r

r v q,  . (5.5)

  

˙ ,˙̇ ,  ,

˙̇ ,˙̇ ˙ , ˙̇  ,

q r r v v

q r r v v

= +{ }
= +{ }

1

1
3

µ

µ

r r r r

r r r r

(5.6)

(5.7)

(5.8)

    

r r r r r r r r r r
r r

r
r r

r
r v v r

r
r v,˙̇ – , ,˙̇ ˙ ,   , ˙̇ ,  ,= = = −µ µ µ2

3 3;

(5.9)



Mohamad A. Sharaf et al.190

Consequently q (Equation (5.5)) satisfies the differential Equation (3.1).
Then according to Section 3, σσσσ could be represented as power series in t by 

where σσσσ0 is the value of σσσσ    at t = t0. Again, the symbolic expressions of q0 ; j ≥
2 are those of Table 1. The values q0, q1, ∈ 0, λλλλ0 and ψψψψ0 needed for those ex-
pressions could be calculated from the initial values r→→→→  

0 and v→→→→     

0 by the following
algorithm.

5.2.1. Computational Algorithm 2

The importance of the quantity σσσσ is due to its appearance in both, the initial
and boundary value problems of space dynamics [see e.g. Danby, 1988]. More-
over, σσσσ    is related to the flight-path angle ΩΩΩΩ    by

ΩΩΩΩ is defined as the angle between the vector v→→→→   and the local horizontal plane. Ac-
cording to Equations (5.10) and (5.11), ΩΩΩΩ could then be obtained at any time.
This fact is important since, ΩΩΩΩ is very useful for specifying a satellite�s orienta-
tion or attitude. This orientation is crucial to determining the effective cross-
sectional area required for both drag and solar-radiation perturbations, which may
be very important depending on the satellite�s mission [Vallado, 1997]. Finally, σσσσ
is universal expression, that is, it could be used for any type of conic orbits.

5.3. Symbolic Computation of the Eccentric Anomaly

The relation between the eccentric anomaly E and time t in an elliptic orbit of
semi-major axis a and eccentricity e is the well known Kepler�s equation of the
form

(5.10)
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=
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where M is the mean anomaly and ττττ is the time of pericenter passage. 

Solving Kepler�s equation has intrigued scientists for centuries [Colwell,
1993]. Solutions may be divided into series and iteration methods. In both meth-
ods E is obtained from the given values of e and M.

In what follows we shall show that, the solution E of Kepler�s equation can
be obtained as power series in t from the given values r→→→→  

0 of and  v→→→→  

0.

In elliptic motion we have 

where σσσσ is given from Equation (5.5) and αααα is given in terms of r and υυυυ from
Equation (2.8) as 

Let

then from Equations (5.12) and (5.13) we get 

therefore Equation (5.17) becomes 

Consequently, q (Equation (5.16)) satisfies the differential Equation(3.1). As
in the pervious subsections, E could be represented as power series in t as 

As in the above subsection, the symbolic expressions of qj ; j ≥ 2 are those of
Table 1, while the starting values could also be calculated from the initial values
r→→→→     

0 and v→→→→  

0 by the following algorithm 
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5.3.1. Computational Algorithm 3

6. Conclusion

In concluding the present paper, a simple unified approach uses Largrange�s
fundamental invariants were used to develop time series expansions of four
vital two-body problems.
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