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Abstract. A new technique is presented for automatic inversion of SP
anomalies due to a polarized infinitely conductive simple geometrical
source model structures, based on an artificial intelligence search
strategy entitled genetic algorithm (GA) and the evolution theory. The
genetic algorithm is used to find the minimum of fitness or cost func-
tion of the unknown depth, polarization angle, and shape factor. The
study of synthetic examples shows fast and stable recovery of the true
parameters even if the input data contain different percentages of
noise. The GA leads to very realistic values for the inverted
parameters in all tested examples and the root-mean squared error
(rms) between the true and inverted field is accepted. The technique is
further applied to real examples from Germany and Turkey.

Introduction

Self-potential (SP) prospecting is one of the oldest geoelectrical methods, and is
still used in many fields of applied geophysics. The SP measurements refer to
that part of the natural electrical field which is stationary in time, or nearly so,
and whose current source system is generated and sustained by phenomena
occurring underground within geologic structures. Many source mechanisms
have been proposed to explain the genesis and time and space pattern of the SP
field. The common aspect of the many source models is that an electric charge
polarization is set up, which is responsible for electric current circulation in
conductive rocks. For more details about this aspect, the reader is referred to
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Di Maio & Patella (1991), Patella et al. (1997), Sailhac & Marquis (2001) and
Patella (2003). Hence the detected SP anomalies are simply the surface
evidence of a more or less steady state of electric polarization. It follows that, in
a final analysis, the SP inverse problem merely consists of finding the location
and delineating geometry of any electric charge accumulation underground (Pa-
tella, 2003).

Self-potential data have been quantitatively interpreted using visual correla-
tion between observed profiles, logarithmic curve matching, and characteristic
points. In the last two decades, with the availability of fast computers, several
numerical-based techniques have been developed to interpret SP anomalies.
The use of available geometric source models, including charged points, lines,
spheres, cylinders, and sheets provided very useful estimates of source
parameters. These source parameters can simply be described by a self-potential
(SP) anomaly expression produced by simple geologic forms that are repre-
sented as a continuous function of the parameter space. 

The above mentioned techniques can be classified into three main categories
as follows:

1. Graphical-based techniques. The different interpretation techniques avail-
able are using selected points on the anomaly curve. These were developed by
Yüngül (1950); Paul (1965); Paul et al. (1965); Rao et al .(1970); Bhattacharya
and Roy (1981) and Atchuta Rao & Ram Babu (1983). The logarithmic curve
matching were developed by Meiser (1962); and Murty and Haricharan, (1985).
The drawback of the above methods is the complexity in case of numerous var-
iable (El-Arabi, 2004).

2. Numerical-based techniques. These include analysis of SP fields using
Fourier analysis in wavenumber domain (Asfahani et al., 2001), nomograms
(Murty and Haricharan, 1985) and least-squares methods (Abdelrahman and
Sharafeldin, 1997, and Abdelrahman et al., 1997b). Furthermore, derivative
analysis and gradients have been also used (Abdelrahman et al., 1997a, 1998a,
b, 2003, and Sundararajan et al., 1998). Although, the above techniques provide
the best fit parameters using proper initial guess and characteristic points, they
are greatly influenced by noise in the measured data and may lead to serious er-
rors ( El-Arabi, 2004).

3. Complex analytical modeling-based techniques. More complex and
advanced techniques based on physical tomography (Patella, 2003). Where im-
aging of a properly defined probability function of electric charge distribution
in the surveyed volume was found to be consistent with the observed SP anom-
aly pattern.

In the first two categories, traditional algorithms have been successfully used.
However, two main problems may limit the effectiveness of these techniques:
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first, by increasing the number of inverted parameters, the dimensionality of the
energy surface increases, thereby greatly increasing the probability of the op-
timization stalling in a local minimum (Abdelrahman et al., 1998b). This is due
to the fact that the SP inversion problem is an ill-conditioned and non-linear
problem. Such ill-posed conditions were greatly damped where the depth and
shape factor were estimated simultaneously by minimizing an objective func-
tion of depth and shape factor using the nonlinear simplex polytope algorithm
(Gobashy, 2000). Secondly, discretization of the data and parameterization of
model space, make the topology of the objective or fitness function exhibit sev-
eral local minima (Ramillien and Mazzega,1999), as opposed to a continuous
inverse where the number of solutions is infinite. Such conditions make the
estimated models differ from the true and the appraisal problem arises. More-
over, ambiguity is inherited in the inversion of potential field data. Traditionally
this problem has been tackled using detailed a priori information on the problem
constraints. Such information is not commonly available in real geophysical
problems. To detect the location of the global minima in the parameter space,
classical techniques and even gradient-based methods that follow the steepest-
descent direction are not a perfect choice. Unfortunately, even these search
methods are local in scope and stop at the first local minimum they find (Ramil-
lien, 2001).

This paper outlines the development of a scheme for the constraint inversion
of SP anomalies through the use of evolutionary-based technique, the genetic al-
gorithm (GA), which appears to be effective to overcome the above limitations.
In the present approach, the shape factor, depth and polarization angle for the
source models are estimated. Due to the evolutionarily structure of the GA, the
appraisal problem is minimized and a good solution can be estimated. Synthetic
and real examples are presented to test the validity of the proposed procedure.

Problem Formulation

The self-potential anomaly V(x,h,α,q) caused by a polarized infinitely con-
ductive sphere or a cylinder in a homogeneous half-space (Fig. 1) at any point,
P(xj) along the principal x-axis can be expressed (Yüngül, 1950; Bhattacharya
and Roy, 1981; Murty and Haricharan, 1985; Abdelrahman et al., 1998a; El-
Arabi, 2004) as follows:

where M is the electric dipole moment, h is the depth to the center of the sphere
or cylinder, xj is a discrete point along x-axis where the observed anomaly is
located, q  is the shape factor, and α is the polarization angle. The axis of the in-
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finite cylinder is perpendicular to the page and parallel to the Y-axis. In Eq. (1)
q = 1 for the horizontal cylinder, zero for a horizontal sheet and 1.5 for a sphere.
α is measured from the surface to the polarization axis from the center of the
sphere or cylinder to the surface (Fig. 1). The point O is on the surface at a
point vertically above the center of the anomaly source. The main target is to
find, through a convenient numerical approach, the unknown parameters h, α,
and q that best represent an observed anomaly Vobs. The problem would be
transformed into the problem of minimization of an objective or fitness function
ψ of the same unknowns. The form of this function, commonly used in geo-
physics, is simply:

Where m is the number of data points and Vcalc is the calculated response.
The target now is to minimize ψ(xj,h,α,q) to estimate the unknowns under
bound constraints on the unknown variables. In a mathematical form, this may
be expressed as; 

Fig.  1. Geometry of a 2-D cylinder or a sphere.
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Such an optimization problem can be solved using an evolutionary scheme
based on the genetic algorithm (GA) global optimizer. The next section gives a
brief overview of the genetic approach and how to implement the SP problem. 

Principles of Genetic Algorithms

Many optimization problems are very complex and quite hard to be solved by
conventional optimization techniques. Over the last decade, genetic algorithms
(GAs) have been extensively used as search and optimization tools in various
problem domains (Wilson et al., 1994). The primary reasons for their success
are their broad applicability, ease of use and global perspective (Goldberg,
1989; Billings et al., 1994; Boschetti et al., 1996; Stoffa and Sen, 1991 and
Boschetti et al.,1997). Genetic algorithms mimic natural selection and bio-
logical evolution to achieve their power, and their operational characteristics are
typically analogous to the evolution theory. Generally speaking, GAs initially
works with a population of individuals, each representing a possible solution to
a given problem. Each candidate solution, or individual, is generally repre-
sented as a string of bits (a set of binary character strings) analogous to chromo-
somes and genes in evolution theory. GAs assigns a fitness score to each in-
dividual based on the quality of the solution it represents, and highly fit
individuals are reproduced by breeding with other individuals.

The fitness is a computation that evaluates the quality of the chromosome as a
solution to a particular problem. By analogy with biology, the chromosome is re-
ferred to as the genotype, whereas the solution it represents is known as the phe-
notype. The translation process can be quite complicated. In timetabling and man-
ufacturing scheduling GAs, for example, a chromosome is translated into a
timetable or set of scheduled activities involving large numbers of interacting re-
sources. The fitness computation will then go on to measure the success of this
schedule in terms of various criteria and objectives such as completion time, re-
source utilization, cost minimization and so on. This complexity is reminiscent of
biological evolution, where the chromosomes in a DNA molecule are a set of in-
structions for constructing the phenotypical organism. A complex series of chem-
ical processes transforms a small collection of embryonic cells containing the
DNA into a full-grown organism, which is then “evaluated” in terms of its suc-
cess in responding to a range of environmental factors and influences.

New populations are continuously evolved over generations. The total num-
ber of solutions in one generation is called the population size denoted by Npop.
As different individuals compete for resources in the environment, those in-
dividuals that are fittest are more likely to survive and propagate their genetic
material. Thus, during the evolution process, the quality of the population in-
creases, leading to an optimal solution. Finally, the population is expected to
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converge towards an optimal solution to the encoded problem after a certain
number of generations (Ngen) are completed (Hashem and Alex, 1999). A sim-
ple flowchart for GA is given in Fig. 2.

Fig. 2. A flow chart of the working principle of GA.
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Selection of Initial Population

As we previously mentioned, GA starts by a group of individuals or popula-
tion, in order to avoid any bias at the beginning of the evolutionary operation,
each of the parameters defining each individual in the initial population is
initialized with uniformly distributed random number R ∈ [0.0, 1.0]. The fitness
is then calculated for each individual phenotype and stored in 1D array.  The fit-
ter the chromosome, the more times it is likely to be selected to reproduce. 

In its simplest form, a genetic algorithm involves three types of reproduction
operators: Selection, crossover and mutation, in the following sections, we dis-
cuss the reproduction operators used in this study.

Reproduction Operators

Reproduction operators of genetic algorithms provide a means to weed out
bad solutions and to generate a new and better set of solutions during every it-
eration. Desirable characteristics of the parents are inherited by offspring during
the reproduction phase by combining the best characteristics of both parents.

Selection

The process of selection of both parents in the study is carried out using a sto-
chastic sampling mechanism that is mainly based on the Roulette wheel
algorithm  (Goldberg, 1989). The selection procedure is such that the probability
of an individual being selected is proportional to that individual's fitness. How-
ever, directly using fitness as a measure of breeding probability suffers from a
number of shortcomings (Goldberg, 1989 and Davis, 1991). In the present GA,
the selection pressure or ranking procedure is implemented. In ranking theory,
each individual is assigned a rank rj based on its fitness Sj. By convention, let r =
1 correspond to the fittest individual, and r = np (np : number of populations) to
the least fit. Then the relative fitness S ' in terms of the rank is:

This relative fitness is then used as a measure of selection probability in the
roulette wheel algorithm in place of the true fitness Sj. In this way, a constant
fitness differential is imposed across the population.

Crossover

Crossover is the second reproduction process by which a portion of two fit
parent individuals combine to produce two child individuals. There are three
types of crossover operations typically used: single-point, two-point and uni-
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Mutation

Mutation is the third reproductive operator that provides a theoretical guar-
antee that no bit value is ever permanently fixed in all strings. Mutation intro-
duces random modifications, thereby inducing a random walk through the
search space. During mutation, with a low probability, a portion of the new in-
dividuals will be flipped to generate a new bit.  In conjunction with the decimal/
decoding scheme, the uniform-one point mutation included in many GA
routines is liable in getting stuck at Hamming Walls problem (Charbonneau,
2002). These problems arise, when a population of relatively good trial solution
is being refined primarily by the action of mutation. The process of creep muta-
tion used in these work overcome such a problem in a simple way. Once the
digit has been targeted for mutation, the corresponding digit is either in-
cremented or decremented with equal probabilities. 

form crossover. Single-point crossover is usually performed by swapping the
fragments between two parents at a random point along the bit-string. Crossover
is generally applied to randomly paired strings with a moderate to high prob-
ability denoted Pc (usually the value of Pc falls between 60 and 100%). The
two-point crossover is used in this study (Fig. 3). It has the advantage of over-
coming the end-point bias by selecting two randomly chosen splicing points
along the string, and exchanging the string segments located in between these
splicing points in a manner otherwise identical to one point crossover. 

Fig. 3. Two-point crossover mechanism. 
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Adjustment of Mutation Rate

In the present work, creep-mutation probability pm is self-adapted at the end
of each generational iteration. The degree of clustering of the population is
computed using as a measure, the normalized fitness difference between the
best and median individuals (according to the fitness-based rank): ∆f  = ( f max –

f med) / ( f max – f med), where f max ≡ f (xmax), and f med ≡  f ( x med), and xmax,
xmed are the parameter sets defining the best and median individuals, re-
spectively. When ∆f → 0, the population is strongly clustered, while if  ∆f →1
the population is scattered across parameter space. The idea is to increase the
probability pm in the former case, and decrease it in the later. The population
clustering in this study is measured using the metric distance between the best
and median as follows. 

where, n is the number of parameters in a solution vector x (the three
parameters; shape factor, depth and polarization angle). The mutation rate is
varied according to:

Where δ = 1.5, ∆low = 0.05, ∆high = 0.25, and ∆ stands for either ∆f or ∆d.

The above section gave a brief description to the GA used in this study, for
more detail the reader can referee Charbonneau and Knapp, 1995, and Char-
bonneau, 2002.

Application to Synthetic Examples

Synthetic Case 1 

We proposed a 2-D polarized infinitely conductive horizontal cylinder model
with the shape factor q =1.0, the electric dipole moment M = –300, the depth to
the center of the model h = 13 units, and the polarization angle α = 48 degrees.
We propose to measure the data along a profile extended along the surface from
x = –25 to x = +25 units. The GA optimizer used has the following parameters
(strategy parameters): number of individuals = 100, number of generations
(Ngen) is 3500, number of genes, i.e. number of significant digits retained in
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Table 1. Results of inversion of synthetic example 1.

Noise True Inverted
Error %

Optimum rms
added parameters parameters fitness error

Shape factor (q) 1.0 1.000 0

Depth (h) 13 13.1546 1.18 1.0059 0.0026

Polarization (α) 48 48.0001 0

Shape factor (q) 1.0 1.0002 0

Depth (h) 13 13.202 1.55 0.0706 0.0299

Polarization (α) 48 47.862 0.28

Shape factor (q) 1.0 1.0009 0

Depth (h) 13 13.225 1.73 0.0277 0.067

Polarization (α) 48 47.432 1.18

The results of the inversion using the GA approach are shown in Fig. (4a)
and Table (1), which represents noise-free data. The root-mean square error
(rms) is calculated and found to be 0.0026 mV. This is a measure of how close
the calculated model response is to the measured data. The optimum fitness,
1.005 mV, and both the shape factor and the polarization angle are obtained
with a high resolution (0% error). The depth is obtained with 1.18% relative er-
ror. The same example is inverted after adding 5% and 13% noise to the syn-
thetic data (Fig. 4b,c). Results are shown in Table (1). The table specifies the
parameters, both true and inverted ones. It also shows the percentage of noise
added to the synthetic data and the percentage of error in the parameters es-
timated. Similarly, relative errors in all parameters are calculated. The most re-
solved parameter is the shape factor q. The magnitude of the overall (rms) error
is always less than 0.02mV. The value of the minimum objective function is
also given for each inversion process. 

Synthetic Case 2

This is similar to synthetic case 1. We proposed a polarized infinitely con-
ductive spherical model with depth to center h = 10.5 units, shape factor q =1.5,

chromosomal encoding = 6 (machine dependent), the crossover probability =
0.85 which is the probability in which any one gene locus will mutate in any
one generation, the mutation mode is taken variable, the initial mutation rate
(probability Pm) is 0.005.  The bounds on the mutation rate are = 0.0005 and
0.25, respectively and the relative fitness differential Sj is chosen as 1. 

0%

5%

13%
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Fig. 4. The results of the inversion of a synthetic SP anomaly due to a 2-D horizontal cyl-
inder model (h = 13, q = 1.0, and αααα = 48) with 0% noise (a). Same data with 5%
noise (b), and 13% noise (c).
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and polarization angle α = 35 degrees. For the sake of comparison, the GA
strategy parameters are the same as those used in case 1 (number of individuals
= 100, Ngen is 3500, number of genes is 6, the crossover probability = 0.85,
mutation probability Pm  is 0.005.  The bounds on the mutation rate are =
0.0005 and 0.25, and the relative fitness differential Sj is chosen also as 1).
Noise-free anomaly was firstly used and inverted using GA procedure. Results
are shown in Fig. 5a and Table (2). The most resolved parameters after the in-
version process is the shape factor q. The over all (rms) error is approximately
zero. The optimum fitness is 0.0696 mV. The same inversion process is re-
peated with noise levels 6% and 14% (Fig. 5b,c). The resolution of the different
inverted parameters varies. The optimum fitness in the low noise is 0.56 mV,
while in the high noise 0.26 mV. The (rms) error is less than 0.0044 mV in both
cases. 

Field Examples

Field Example 1

The present approach is further applied to a field example from Germany, the
graphite deposits in Bavarian Woods (Meiser, 1962). These deposits are situ-
ated in a hercynic gneissic complex. Conformably intercalated between par-
agneiss and crystalline limestone of the same age, they form seams that are to
be designated as bituminous sediments of presumably Precambrian age. The tar-
get deposit lying between limestone and gneisses forming a parallel-running
sequence of lenses, which are very variable in their thickness, this deposit can
be approximated in some localities by simple geometrical models. The GA
optimizer has been applied with a number of individuals = 100 and number of
genes equals to 3500. All other GA strategy parameters are kept fixed as stated
in the synthetic examples. The results of the inversion are shown in Fig. 6 and
Table 3.  The parameters obtained are: depth h = 35.50 meters, polarization an-
gle α = –62.99 degrees, and shape factor q = 0.792. The (rms) error calculated
between the observed and calculated SP anomalies from the obtained
parameters is =1.7043 mV, which is much better than that of the earlier studies
(Abdelrahman et al. 2003, (rms = 25.3 mV).  The obtained shape factor also
suggests that a 2D horizontal cylinder model buried at a depth of 35.5 meters
can represent the shape of the source body. These results (shape factor and po-
larization) are relatively close to those proposed by Meiser (1962) using double
logarithmic net method and master curves, and Abdelrahman et al. (2003) using
higher derivatives and least-squares method. Table (3) summarizes the above
results. The calculated depth shows diversity from the results of Meiser and Ab-
delrahman (about 14 m). We believe that our solution is close to reality because
our data fitting is much better (rms = 1.704). Moreover, synthetic study on the
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Fig. 5. The results of the inversion of a synthetic SP anomaly due to a spherical  model (h =
10.5, q = 1.5, and αααα = 35). The noise levels added to the data are 0% (a), 6% (b), and
14% (c).
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Table 2. Results of inversion of synthetic example 2.

Noise True Inverted  
Error %

Optimum    rms    
added parameters parameters       fitness   error

Shape factor (q) 1.5 1.4999 0.006

Depth (h) 10.5 10.6861 1.77 0.0698  0.0000433

Polarization (a) 35 34.8000 0.571

Shape factor (q) 1.5 1.50588 0.392

Depth (h) 10.5 10.5289 0.275 0.5613 0.0044

Polarization (a) 35 34.84921 0.430

Shape factor (q) 1.5 1.5120 0.8

Depth (h) 10.5 10.36351 1.299 0.2651 0.0092

Polarization (a) 35 34.7874 0.607

0%

6%

14%

Fig. 6. Measured and calculated SP anomaly over a graphite ore body, southern Bavarian
woods, Germany (after Meiser, 1962). With calculated rms = 1.704mV at one unit =
1 meter.



Self-Potential Inversin Using Genetic Algorithm 97

Table 3. Results of the present technique using genetic algorithm applied to the field ex-
ample and a comparison with the previous techniques.

Abdelrahman Abdelrahman
Parameter Meiser (1962)  et al., (2003) et  al., (2003)

Present

(higher derivatives) (least squares)
approach

Depth (h) 53 53 49.3 35

Polarization angle (α) – – – 55.7 – 62.9

Shape factor (q) –  0.9 0.91 0.792

Root mean square
– – 25.3 1.704error (rms)

Summary and Conclusion

A new optimization strategy based on the genetic algorithm "global optimiz-
er" is used to determine the parameters of a buried simple geometrical source
model structures from their SP anomalies is used. The method uses the evolu-
tionary characteristics that mimic nature's evolutionary principles to derive its
search towards an optimal solution. The present approach uses a population of
solutions in each iteration instead of a single solution used in classical tech-

same model with much higher noise level (13%), assume confidence level of
± 1.73 mV for the depth parameter.  

Field Example 2 

The second real example is from eastern Turkey. The anomaly named
Süleymanköy lies in the Ergani copper district, 65 km, south east of Elazig
(Bhattacharya and Roy, 1981). The field measurements were performed and
described in Yüngül (1950). They represent a polarized copper ore body. The
anomaly has been digitized to 32 data points of 4.8 meters spacing. The in-
verted parameters are given in Table (4) to be compared with previous work re-
sults. The measured and inverted fields are shown in Fig. 7.

Table 4. Results of the Süleymanköy SP anomaly inversion as compared to previous work.

Yüngül
Bhattacharya

Asfahani et Gobashy Present GAParameter
1950

& Roy,
al., 2001 (2000) technique1981

Depth (h) in meters 38.8 40 27 33.6 29.999

Polarization (α) 21 15 17.25 15 11.549

Shape factor (q) h. cylinder h. cylinder h. cylinder 0.99   0.961
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niques. The outcome populations of solutions all converge to the optimum or
minimum assuming a single global minimum exists. Moreover the present tech-
nique overcomes the ill-poseness and non-linearity of the SP problem. No fur-
ther graphical processing or derivative analysis is used. The solution is obtained
automatically for a residual SP field. Genetic algorithm is proven to providing
reasonable results and proven to be effective in the interpretation of Sp data.
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wMO'« Â“—«u)« Â«b���U� w�«c�« bN�K� WO�JF�« WKJA*« q�

*w�U�� vHDB� bL��  Ë  , bL�� rOEF�« b�� UN�
dB� − …d�UI�« − WOI�eO�uO'«Ë WOJKH�« Àu��K� w�uI�« bNF*«

e�eF�« b�� pK*« WF�U� − ÷—_« ÂuK� WOK� − ¡U�eO�uO'« r�� * Ë
W�œuF��« WO�dF�« WJKL*« − …b‡‡‡�

…b�b?� WOJO�U?�u�Ë√  WI�d� .b?I� v�≈ Y���« «c� ·b?N� ÆhK�?��*«
X% —œU??B?� s� W?&U?M�« ,w�«c�« b?N??'«  «–U?A� W??O?�JF�« WK?JA*« q(
—uD��« ’«u??� Â«b?�??�?�U� p�–Ë ,WD?O?�� W??O?�bM� W??OM�  «– W?O??�D�
·bN� ,UO�u�uO��« w� —uD�K� ÂU?F�« √b�*« w�U�� Íc�«Ë ,wMO'« Â“—«u�K�
W?L?O?I�« œU?��ù wMO?'« Â“—«u?)« Âb?�?�?�« b?�Ë Æ‰uK(« s�?�√ ◊U?�M�?�«
,»UDI?�?�ô« W�Ë«“Ë ,oL?F�« vK� W�u?��?� ·b� W�«b� W?IKD*« Èd?G?B�«
WKOK�?��«  U�«—b�« X�œË ÆU�œU?��≈ »uKD� q‡O�U�?L� qJA�« q�U?F�Ë
5O?F� w� vMO'« Â“—«u?)«  U��Ë W?�d� Èb?� …œbF?�� W?O{U�— WK�?�√ vK�
ÆWE�ö*«  «–UA�« v� …d�u?� œu�Ë W�U� w� v�� ,W�uN?:«  ö�UF*«
WK�?�_« lO?L� v� …b?O?� ZzU?�� v�≈ W?�d�?I*« W?I�dD�« Â«b?�?��« Èœ√ b?�Ë
pK�Ë W�u�?;«  «–UA�« 5� ·ö��ô« rO?� p�– b�√ b‡�Ë ÆUNOK� W?I�D*«
U?O�U‡‡*√ s� 5O?I?O?I?� 5�U?�� vK?� WI�d?D�« XI?�� W�U?NM�« v�Ë ÆWE�ö*«

 ÆW�bOKI��« ‚dD�U� WD�M��*« UN�öO�� l� WI�«u�� ZzU�M�« X�U�Ë ,UO‡‡�d�Ë




