Ao ) 4838 ciliaa ) JLEA) gald
Zial) adia

g2alid) taaf daaa aa

eliy (8 el 2yl 31 Ao lial) g dalel) CileUadl (o aaall 8 Gpaal 1) Canpual 213V Alle G al)
dalie o Sin (Exascale) A3lead) cluulally " sale gl 3 € Ao 5508 3 A83ee Ciliidla
A8 gal dpanl T g )5l e Jand Atz dadail oLy rpay celldl da i€ 5 Lanldll ALY cl il DA
e s Glluall & (GPU) I aladiul xual "L (Exascale) dakaily dalaiall doslal) eyl
Al lbual) 388 4 Cuacad ) Lginuh a5l e Jaad ) Aadail) sk (A )
2l (e g e il ) Aala @lia g0 e Jead et il ol (53153 e Jand il
Clas g Gaat G g dulaiall e Akl 8 o) sl (5 siae 3L 31 AEDN 5 A 50 Jall daa )
5 Aa g0 el daa il 3 e 22 s (GPU) pgw )l Aalae Glasg 5 (CPU) 4 S e Alales
Oe 2l e s sing o 5all 138 (MPI+OpenACC) s z3kaill oda aal 5 dadaill) ol b deadinl)
5 Caaial Calise o Jaall acny Gl 5 LWl 6 ) sil) (5 siia 33 o aelus ) L) Sl
Gl gt Ll el Slautl (e Qa8 aae 5 Bl agay 4 ) sie Aalaif sl pme yudl aelun
sladl maen (B Ailleall Sladal 3 5ea] e el (B ) Fe IS8 ) A5 pa8iy maal (OpenACC)

Al

Mo L) Cmaay g ol A jo ()5S 5 Aanaa dago Adlide a3l ol Aadil oy ()4 «lld g
Jyman 4lSa) o 2 s sball e daa g zisad pladinly 4 5) 5o dadail by 8 el ) diLayly
L)y ) Jang lae e e gl el sl e Jand ) cliglatl) s Ul 5 ceUaslY!
el (3o Gl ¢ saaddl 3503 Jaaed s elad¥) GLESH any s duna dage Jurnlill) g oL o Uady)
Goalail) (s JAIs Fan ll pilide ad sad e () L 3laa) ol eUadY) ol a3 38 (S 13) Le a3
el o caling gl o elUad¥) (e daa g il 8 LS 138 ol W1 b i) caraall (e Jaag
ol Cuia yee 5 Y 138 o YY) eJaill C g elUaal CalSs N HLaay) cl gl e daedl 25y o
e ) zilai b S A 5 3l el il b Wi o 3 il 3 iaad 3 oUady)
elbdl yaad Cany ) da s (OpenACC) = Alall cild gkl Aala 5 o5 siwall d3lle 4 5) sidl)

Leslad zraia 53 angy s ((Compilers) ) ddassl 5 Lgie i€l Koy ¥ I(OpenACC)



e Ll a5 (OpenACC) - i iy Ubal Capiuaiy apaaty GLESL it Al 228
oo ISl Bana L) Gk g s pa LS il adina T pdie 058800 J5Y Jase 8
45l 235l s (MPIH+OPenACC) s 52 all daa ) zilad & ddidaall dadadll) 4 Judill <5 ollaal
Ly Al LN pand Al sall Al HUEAY) 1) 8 gl oda (Gadai s (C+) Al
Deadl) 3 5ad Jalad A (pe Aldiaall g Auiidad) Juadal) ¢ g Ul Caliay Al o 2461 Lasy)
Ao sane dudasiy LAY g 3 5a3 ) Al siell Auagd) il aladinl (gagae Judil) g (U
elhdY) Caiiay ol aasy V) s Hedite Jee gl 2a g ¥ dlide aa e o pal oUndl) (e dal
e zdsad aladinly dea ol lipdaill JLEAY deaae Jlid) 310 2 5 Y 5 ¢(OpenACC) - ddlaidll
o Aualall Jntill 28 5 ellaa] CELES) 5 (MP1+OpenACC) A 52 3all el z3lai i (OpenACC)



Towards Exascale Software Testing

By
Ahmed Mohammed Alghamdi

Supervised by
Prof. Fathy Elbouraey Eassa

ABSTRACT

High-Performance Computing (HPC) recently has become important in several sectors, including
the scientific and manufacturing fields. The continuous growth in building more powerful super-
machines has become noticeable, and the Exascale supercomputer will be feasible in the next
few years. As a result, building massively parallel systems becomes even more important to keep
up with upcoming Exascale related technologies. Also, using GPU computation becomes the
leading player in the evolution of parallel systems because of the nature of GPUs specialized for
compute intensive and highly parallel computation. For building massively-parallel systems, a
combination of programming models is needed to increase the system's parallelism, especially
dual and tri-level programming models, to increase parallelism in heterogeneous systems that
include CPUs and GPUs. There are several combinations of the dual-programming model; one of
them is MPI+ OpenACC. This combination has several features that increase the application’s
parallelism concerning heterogeneous architecture and support different platforms with more
performance, productivity, and programmability. In addition, OpenACC is a high-level parallel
programming model used with FORTRAN, C, and C++ programming languages to accelerate the
programmers' code with fewer changes and less effort, which reduces programmer workloads
and makes it easier to use and learn. Also, OpenACC has been increasingly used in many top
supercomputers around the world, and three of the top five HPC applications in Intersect360
Research are currently using OpenACC.

However, building systems with different programming models is a difficult task, error-prone and hard to
test. In addition, building parallel systems by using a higher level programming model increases the
possibility of introducing errors, and the parallel applications thus shows non-determined behavior, which
makes testing and detecting runtime errors a challenging task. Even after detecting the errors and
modifying the source code, it is not easy to determine whether the errors have been corrected or hidden.
Integrating two different programming models inside the same application make it even more difficult to
test because this integration could come with a new type of error or different behavior. Although there
are many testing tools that detect runtime errors, this is still inadequate for detecting errors that occur in
applications implemented in dual-programming models and in high-level parallel programming models,



especially OpenACC related applications. As a result, OpenACC errors that cannot be detected by
compilers should be identified, and their causes should be explained.

In this thesis, we detect, identify, and classify OpenACC runtime errors and determine their causes with a
brief explanation for the first time. Also, we provide and propose new testing techniques for detecting
runtime errors in systems implemented in C++ and MPI + OpenACC dual-programming models, and we
implement these techniques in our parallel hybrid-testing tool. The hybrid techniques combine static and
dynamic testing techniques for detecting real and potential runtime errors by analyzing the source code
and during runtime. Using parallel hybrid techniques will enhance the testing time and cover a wide range
of errors. Finally, to the best of our knowledge, there is no published work to date that identifies or
classifies OpenACC-related errors, nor is there a testing tool designed to test applications programmed by
using the OpenACC programming model or the dual-programming models MPI + OpenACC and detect
their runtime errors.



