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ABSTRACT

High-Performance Computing (HPC) recently has become important in several sectors, including
the scientific and manufacturing fields. The continuous growth in building more powerful super-
machines has become noticeable, and the Exascale supercomputer will be feasible in the next
few years. As a result, building massively parallel systems becomes even more important to keep
up with upcoming Exascale related technologies. Also, using GPU computation becomes the
leading player in the evolution of parallel systems because of the nature of GPUs specialized for
compute intensive and highly parallel computation. For building massively-parallel systems, a
combination of programming models is needed to increase the system's parallelism, especially
dual and tri-level programming models, to increase parallelism in heterogeneous systems that
include CPUs and GPUs. There are several combinations of the dual-programming model; one of
them is MPI+ OpenACC. This combination has several features that increase the application’s
parallelism concerning heterogeneous architecture and support different platforms with more
performance, productivity, and programmability. In addition, OpenACC is a high-level parallel
programming model used with FORTRAN, C, and C++ programming languages to accelerate the
programmers' code with fewer changes and less effort, which reduces programmer workloads
and makes it easier to use and learn. Also, OpenACC has been increasingly used in many top
supercomputers around the world, and three of the top five HPC applications in Intersect360
Research are currently using OpenACC.

However, building systems with different programming models is a difficult task, error-prone and hard to
test. In addition, building parallel systems by using a higher level programming model increases the
possibility of introducing errors, and the parallel applications thus shows non-determined behavior, which
makes testing and detecting runtime errors a challenging task. Even after detecting the errors and
modifying the source code, it is not easy to determine whether the errors have been corrected or hidden.
Integrating two different programming models inside the same application make it even more difficult to
test because this integration could come with a new type of error or different behavior. Although there
are many testing tools that detect runtime errors, this is still inadequate for detecting errors that occur in
applications implemented in dual-programming models and in high-level parallel programming models,



especially OpenACC related applications. As a result, OpenACC errors that cannot be detected by
compilers should be identified, and their causes should be explained.

In this thesis, we detect, identify, and classify OpenACC runtime errors and determine their causes with a
brief explanation for the first time. Also, we provide and propose new testing techniques for detecting
runtime errors in systems implemented in C++ and MPI + OpenACC dual-programming models, and we
implement these techniques in our parallel hybrid-testing tool. The hybrid techniques combine static and
dynamic testing techniques for detecting real and potential runtime errors by analyzing the source code
and during runtime. Using parallel hybrid techniques will enhance the testing time and cover a wide range
of errors. Finally, to the best of our knowledge, there is no published work to date that identifies or
classifies OpenACC-related errors, nor is there a testing tool designed to test applications programmed by
using the OpenACC programming model or the dual-programming models MPI + OpenACC and detect
their runtime errors.



