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ABSTRACT

Graphics processing units (GPUs) have delivered remarkable performance for many
high performance computing (HPC) applications through massive parallelism that
they provide. Iterative solution of large linear equation systems that forms an essential
building block for numerous scientific and engineering applications is one such
application. However, obtaining performance for Sparse Matrix-Vector (SpMV)
multiplication that is the core kernel of iterative solutions of linear equation systems
has remained a challenge due to the varying sparsity patterns of the nonzero entries in
the linear equation systems. A number of schemes have been proposed to improve
SpMV storage and computation performance. However, these schemes are mainly
evaluated and compared in terms of the SpMV throughput in FLOPS, which alone
does not provide a deep insight into the SpMV storage and computations.

The aim of this thesis is to analyze, understand, and improve the performance
of Jacobi iterative method and SpMV computations on GPU architectures. Towards
this aim, we provide a detailed study of four notable schemes (CSR, ELL, HYB, and
CSR5). The schemes are evaluated individually and compared using eight different
performance metrics including execution time, GFLOPS, achieved occupancy,
instructions per warp, warp execution efficiency, global memory throughput, global
memory efficiency, and global memory transactions. Subsequently, using the deeper
insights into the performance gaps of the current schemes, gained through the detailed
performance analysis of the schemes, we propose a novel SpMV computations
scheme called the heterogeneous CPU-GPU Hybrid (HCGHYB) scheme. HCGHYB

provides improved performance over the HYB scheme, which is a popular choice in



many SpMV open source and commercial iterative solvers. Finally, we give

directions for further improvements in SpMV computations schemes.



