Ladlall

W oY) dlle dupall cliuls Jae A Gfialll ge S 48 8 maal GPU e sull Aallae 32s
A 0S5 50 Adadll c¥aleal) dadadly 4 Sl 5kl A) siall A yall ac i Alils <l)08 (e ASLay
1Y) e A sal) il dagall AEY) (e Baal 5 (A Apudighl 5 Apalall Cliplaill (e 3ES 3 Al
3 litall il shiadl (o dded GPU gllad Al <l jadll g3l s e elal A1 Jseasll (Sl
Ofialll (gaas J) 3 Y 3l Aladll ¥ alaall o3 Jad dpulu) 3l i) jiias)5 (SPMV) Cilgaialy
8 (e okl e danll 208 &5 eV Alee ol giiadl sda Gaibiad 5 hlal Cadlia) A G
gl e lehalail il dallae (i jas Leb 335 Cpaad A glaa g 5 ilnall Culd sioaall sda o 301 Cpialil)
AL il (g oY) aplll ind Gl 5 ool aai 40 e andh (3kal) 028 alana (K1 SPMV dlee
A Al oda (e Caagll SN SPMV - ddlae £1aY Aipee 35k et Y (adh llaall dal) uliS)
Caagl) 138 Gaiaily GPU gdias (8 SPMV iliboea 5) S o oSl 485 5kl o101 (paeni's agh s Jla
<ly Jols (CSR, ELL, HYB, HYB) 25 SPMV iilac ¢l ,aY &ailill (5l dleaia)y Lidk
s Adlide Guulie ke aladiuly 3okl 3 aran olaf Al Liagl 5 0 jie (S0 A3y 5k (S oY1 s
3,81 4als) ((GPU throughput) el 4als) ((execution time) 2s8ll (3 piudl <d 5l
3¢ JU bl 22 ¢(achieved occupancy) gl Jas 4 «(Memory throughput)
3 S 4dé ((warp execution efficiency) 4sY) Jad 4ws «(instructions per warp)
Aliaddll 3 laill s2a alaaiulls (memory transactions) 3_SIA clleall 22 «(memory efficiency)
da e Ayl i) A8LaYl okl adgd i gadlly ¢laY) Chmia (alSa yaad a3 A3y 5k JS Y
Crad8 da yiiall 43 Hhall 228 Allal) Camiall (alSe (and o L a3l SpMV <1 aY (HCGHYB)
)8 &3 Tal s SPMV il b Aailall (3 kal) ST (e ind ()5 HY B Ly &5 i Juadl o1

GPU zlas 8 SpMV libes a8 g Of Sy 3015 Jslall (ge 220

ABSTRACT

Graphics processing units (GPUs) have delivered remarkable performance for many
high performance computing (HPC) applications through massive parallelism that
they provide. Iterative solution of large linear equation systems that forms an essential
building block for numerous scientific and engineering applications is one such
application. However, obtaining performance for Sparse Matrix-Vector (SpMV)
multiplication that is the core kernel of iterative solutions of linear equation systems
has remained a challenge due to the varying sparsity patterns of the nonzero entries in
the linear equation systems. A number of schemes have been proposed to improve
SpMV storage and computation performance. However, these schemes are mainly
evaluated and compared in terms of the SpMV throughput in FLOPS, which alone
does not provide a deep insight into the SpMV storage and computations.

The aim of this thesis is to analyze, understand, and improve the performance
of Jacobi iterative method and SpMV computations on GPU architectures. Towards
this aim, we provide a detailed study of four notable schemes (CSR, ELL, HYB, and
CSR5). The schemes are evaluated individually and compared using eight different
performance metrics including execution time, GFLOPS, achieved occupancy,
instructions per warp, warp execution efficiency, global memory throughput, global
memory efficiency, and global memory transactions. Subsequently, using the deeper
insights into the performance gaps of the current schemes, gained through the detailed
performance analysis of the schemes, we propose a novel SpMV computations
scheme called the heterogeneous CPU-GPU Hybrid (HCGHYB) scheme. HCGHYB

provides improved performance over the HYB scheme, which is a popular choice in

many SpMV open source and commercial iterative solvers. Finally, we give

directions for further improvements in SpMV computations schemes.

