ON SOME ASYMPTOTIC BEHAVIOUR OF ABSTRACT MEASURE SYSTEMS

SIHAM J. AL SAYYAD

(Received June 16, 2003)

Submitted by K. K. Azad

Abstract

Existence and uniqueness of solutions of a system of abstract measure of differential equations are investigated. Local stability is studied. The main tools are contraction mapping principle and Schauder's fixed point theorem.

1. Introduction

Let R denote the real line, R^n denote the Euclidean space with respect to the norm $|\cdot|_m$ defined by

$$|x|_m = \max(|x_1|, |x_2|, ..., |x_n|)$$

and let X be a Banach space with norm denoted by $\|\cdot\|$. For any two points $x, y \in X$, the segment \overline{xy} is defined by

$$\overline{xy} = \{z \in X : z = x + \lambda(y - x), 0 \le \lambda < 1\}.$$

Let x_0 , y_0 be two fixed points of X and z be a variable point of X such that x_0z and y_0z are nonempty and $x_0z \subset y_0z$. For x_1 , $x_2 \in y_0z$, we 2000 Mathematics Subject Classification: 34D99, 34C07, 34K99, 28B99.

Key words and phrases: measure differential equation, contraction operator, complex measure sfixed point theorem.

© 2004 Pushpa Publishing House

write $x_1 < x_2$ if $\overline{y_0 x_1} \in \overline{y_0 x_2}$. For any point $x \in \overline{y_0 z}$, we define the sets S_x and \overline{S}_x as follows:

$$S_x = {\lambda x : -\infty < \lambda < 1}, \quad \overline{S}_x = {\lambda x : -\infty < \lambda \le 1}.$$

Let $w = ||x_0 - y_0||$ denote the distance between x_0 and y_0 . For each $x \in \overline{x_0 z}$, there exists a unique vector x' < x such that x' < x and ||x - x'|| = w, and we denote this vector by xw. Note that xw and wx are identical if and only if w = 0 and x = 0 (the zero vector of x).

By a vector measure p defined on a σ -algebra M, we mean an ordered n-tuple $(p_1, p_2, ..., p_n)$ of n real measures. The norm $\|p\|_n$ of p is defined by

$$||p||_n = \max(||p_1||, ||p_2||, ..., ||p_n||),$$

where $\|p_i\|$, i=1, 2, ..., n, denotes the usual norm of the real measure p_i defined in [2]. Let ca(X, M) be the space of all vector measures defined on M. It is clear that ca(X, M) is a Banach space with respect to the norm defined above. If μ is a positive measure on M and $p \in ca(X, M)$, then we say that p is absolutely continuous with respect to μ , if $\mu(E) = 0$ implies p(E) = 0 (the zero vector in \mathbb{R}^n). In this case we write $p \ll \mu$. For $p \in ca(X, M)$, we define a positive measure $|p|_n$ by

$$|p|_m(E) = \max(|p_1|(E), ..., |p_n|(E)),$$

where |p-i| denotes the total variation measure of the real measure p_i as defined in [2].

We shall use the concept available in the following theorem:

Theorem A [2]. Let μ be a positive measure on a σ -algebra M. Then

- (a) $\mu(\emptyset) = 0$.
- (b) $\mu(A_1 \cup \cdots \cup A_n) = \mu(A_1) + \cdots + \mu(A_n)$; if $A_1, ..., A_n$ are positive disjoint members of M.

- (c) $A \subset B$ implies $\mu(A) \leq \mu(B)$ if $A \in M$, $B \in M$.
- (d) $\mu(A_n) \to \mu(A)$ as $n \to \infty$ if $A = \bigcup_{n=1}^{\infty} A_n$, $A_n \in M$ and $A_1 \subset A_2 \subset A_3 \subset \dots$
- (e) $\mu(A_n) \to \mu(A)$ as $n \to \infty$ if $A = \bigcap_{n=1}^{\infty} A_n$, $A_n \in M$ and $A_1 \supset A_2 \supset A_3 \supset \dots$ and $\mu(A)$ is finite.

Let M_0 denote the smallest σ -algebra on \overline{S}_{x_0} containing x_i and the sets \overline{S}_x , $x \in \overline{y_0x_0}$. For any $z > x_0$, let M_z denote the smallest σ -algebra defined on S_z containing M_0 and the sets \overline{S}_x , $x \in \overline{x_0z}$. For a given positive number H, we define the sets B_H and C_H by

$$B_{H} = \{u : u \in \mathbb{R}^{n}, |u|_{m} < H\}, \quad C_{H} = \{q \in ca(\overline{S_{x_{0}}}, M_{0}) : ||q||_{n} < H\}.$$

Now we consider the following system involving the delay \boldsymbol{w}

$$\frac{dp}{d\mu} = f(x, p(\overline{S_{xw}})) \tag{1.1}$$

and the initial condition

$$p(E) = q(E), \quad E \in M_0, \tag{1.2}$$

where $q \in C_H$ is a known vector measure, $\frac{dp}{d\mu}$ is the Radan-Nikodym derivative of p with respect to μ , and f(x, y) is an R^n -valued function defined on $S_z \times B_H$, such that for each $p \in ca(S_z, M_z)$, $f(x, p(\overline{S_{xw}}))$ is μ -integrable.

It can be observed that the equation (1.1) is equivalent to n differential equations

$$\frac{dp_i}{d\mu}=f_i(x,\;p(\overline{S_{xw}})),\quad i=1,\;2,\;...,\;n,$$

satisfying $p_i(E)=q_i(E)$, where $p_1,\,p_2,\,...,\,p_n\in p,\,\,f_1,\,f_2,\,...,\,f_n,$ and $q_1,\,q_2,\,...,\,q_n\in q.$

Definition 1.1. Given an initial measure $q \in C_H$, a vector measure $p \in ca(S_z, M_z)$ (for some $z > x_0$) is said to be a *solution* of (1.1), (1.2) if

(i)
$$p(E) = q(E), E \in M_0$$
,

(ii)
$$p < \mu$$
 on $\overline{x_0 z}$,

(iii)
$$p(E) \in B_H$$
, $E \in M_0$,

(iv) p satisfies (1.1) a.e.
$$[\mu]$$
 on $\overline{x_0z}$.

It is clear that the conditions (ii) and (iv) together are equivalent to the following condition

$$p(E) = \int_{E} f(x, p(\overline{S_{xw}})) d\mu, \quad E \in \overline{x_0 z}$$

when we say that p satisfies condition (ii) or (iv), we mean that it holds for all measurable subsets $\overline{x_0z}$.

Definition 1.2. A solution p of (1.1) and (1.2) existing on $\overline{x_0z}$ will be denoted by $p(\overline{S_{x_0}}, q)$.

2. Main Result

In this section we investigate the existence, uniqueness, extension and stability of solution p for the systems (1.1) and (1.2) using fixed point theorems due to Schauder and Banach [1, 2, 3], respectively.

We assume the following:

(i)
$$\mu(x_0) = 0$$
.

(ii) For any z>x, M_z is compact with respect to the topology generated by the metric "d" defined by

$$d(E_1, E_2) = \mu(E_1 \Delta E_2), \quad E_1, E_2 \in M_2,$$

where $E_1 \Delta E_2$ is the set symmetric difference between E_1 and E_2 .

(iii) There exists a μ -integrable real function U(x) defined on S_z such that

$$|f(x, y)|_m \le U(x), \quad (x, y) \in S_z \times B_H.$$

- (iv) f(x, y) is continuous in y for each $x \in S_z$.
- (v) q is continuous on M_z with respect to the pseudo-metric d defined in (ii).
 - (vi) f(x, y) satisfies Lipschitz condition of the type

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$$

for $(x, y_1), (x, y_2) \in S_z \times B_H$, where L is Lipschitz constant.

Theorem 2.1. Let the assumptions (i)-(vi) hold. Then for a given initial measure $q \in C_H$, there exists a solution $p(\overline{S_{x_0}}, q)$ of (1.1) and (1.2) on $\overline{x_0x_1}$ for some $x_1 > x_0$.

Proof. Let $r_n(>1)$ be a decreasing sequence of real numbers, such that $r_n\to 1$ as $n\to \infty$ and

$$S_{r_1x_0}\supset S_{r_2x_0}\supset\cdots\supset S_{r_2x_0}$$
 ,

then we have

$$\lim_{n\to\infty}\mu\{(\overline{S_{r_nx_0}}-\overline{S_{x_0}})\}=0.$$

This shows that there exists a number r^* and point $x_1 = r^*x_0$ such that $\overline{S_{x_0}} \subset S_{x_1}$ and

$$\int_{x_0x_1} U(x)d\mu < H - \|q\|_n.$$
 (2.1)

This is possible by virtue of (i) and positiveness of μ . Now in the Banach space $B_0 = ca(S_{x_1}, M_{x_1})$ defined by the subset

$$S=\big\{p\in B_0,\; p(E)=q(E)\; \text{if}\;\; E\in M_0\;\; \text{and}\; \big\|\; p\,\big\|_n\,\leq k\big\},$$

where

$$k = \|p\|_n + \int_{x_0 x_1} U(x) d\mu.$$
 (2.2)

From (2.1) and (2.2) it follows that

$$||p||_n < H, p \in S.$$

Now we define the operator T on S by

$$(Tp)(E) = q(E), E \in M_0$$
 (2.3)

$$(Tp)(E) = \int_{E} f(x, p(\overline{S_{xw}})) d\mu, \quad E = \overline{x_0 x_1}.$$
 (2.4)

Let $p \in S$ and $E \in M_{x_1}$, then there exist two disjoint sets F and G in M_{x_1} such that $E = F \cup G$, $E \in M_0$ and $G \subset \overline{x_0x_1}$. Then from (2.3) and (2.4) it follows that

$$|T(Tp)(E)|_m \le |q|_m(F) + \int_G |f(x, p(\overline{S_{xw}}))|_m d\mu$$

which by virtue of (ii) and (2.2) implies that

$$|| (Tp) ||_n \le || q ||_n + \int_{x_0 x_1} U(x) d\mu = k.$$

This shows that T maps S into itself. The continuity of f(x, y) in y leads to the continuity of T. To show that T is compact on S, consider a sequence $\{p_n\}$ in TS (image of S under T). Clearly, $\{p_n\}$ is uniformly bounded. Let E_1 and E_2 by any two sets in $M-x_1$. Then as before we have

$$E_i = F_i \cup G_i, \quad F_i \in M_0, \quad G_i \subset \overline{x_0 x_1}$$

and

$$F_i \cap G_i = \emptyset, i = 1, 2.$$

Now from (2.3) and (2.4) and the condition

$$G_1 = (G_1 - G_2) \cup (G_1 \cap G_2), \quad G_2 = (G_2 - G_1) \cup (G_1 \cap G_2),$$

we obtain

$$\begin{split} p_n(E_1) - p_n(E_2) &= q(F_1) - q(F_2) + \int_{G_1 - G_2} f(x, \ p_n(\overline{S_{xw}})) d\mu \\ &- \int_{G_2 - G_1} f(x, \ p_n(\overline{S_{xw}})) d\mu. \end{split}$$

This by virtue (iii) implies that

$$|p_n(E_1) - p_n(E_2)|_m < |q(F_1) - q(F_2)|_m + \int_{G_1 \Delta G_2} U(x) d\mu.$$
 (2.5)

Hence from (2.5), (v) and μ -integrability of U, we conclude that

$$|p_n(E_1) - p_n(E_2)|_m \to 0$$
 as $d(E_1, E_2) \to 0$

which shows that the sequence $\{p_n\}$ is equicontinuous. By (ii) M_{x_1} is compact. Therefore, by Ascoli's theorem, we further conclude that TS is compact and hence T is a compact operator. Thus T is completely continuous on S. An application of Schauder's fixed point theorem now shows that there exists a solution $p(\overline{S_{x_0}},q)$ of (1.1) and (1.2) existing on $\overline{x_0x_1}$ and this completes the proof.

Theorem 2.2. Let the assumptions (i), (ii) and (vi) hold and $q \in C_H$. Then there exists a unique solution $p(\overline{x_0}, q)$ of (1.1) and (1.2) existing on $\overline{x_0x_1}$ for some $x_1 > x_0$.

Proof. Construct a point x_1 as in Theorem 2.1 satisfying the additional condition

$$L.\mu(\overline{x_0x_1}) < 1. \tag{2.6}$$

Define the set S and the operator T on S as in Theorem 2.1. Then T maps S into itself. Also the assumption (vi) and the condition (2.6) imply that T is a contraction operator on S. Applying Banach's fixed point theorem,

there is a unique solution $p(\overline{S_{x_0}}, q)$ of (1.1) and (1.2) existing on $\overline{x_0x_1}$. This completes the proof.

Under the hypotheses of Theorem 2.1, it can be shown that a solution $p(\overline{S_{x_0}}, q)$ of (1.1) and (1.2) existing on $\overline{x_0x_1}$ can be extended to larger segment, whenever $\mu\{x_1\} = 0$.

Theorem 2.3. Under the hypotheses of Theorem 2.1, let $p = p(\overline{S_{x_0}}, q)$ be a solution of (1.1) on $\overline{x_0x_1}$. Then the solution p can be extended to a larger segment if $\mu\{x_1\} = 0$.

Proof. Consider $p=p(\overline{S_{x_0}},q)$ as the initial measure defined on M_{x_1} . Note that $\|p\|_n < H$. Also, by the assumption $\mu\{x_1\} = 0$. Hence by Theorem 2.1, there exists a solution $p_1 = p_1(\overline{S_{x_1}},p)$ of (1.1) on $\overline{x_1x_2}$ for some $x_2 > x_1$, satisfying the initial condition $p_1(E) = p(E)$, if $E \in M_{x_1}$. This solution p_1 is defined on M_{x_1} , the smallest σ -algebra defined on S_{x_2} , containing $\{x_1\}$, M_{x_1} and the set $\overline{S_x}$, $x \in \overline{x_1x_2}$. It is clear that $p_1(E) = q(E)$, $E \in M_0$. Hence p is the desired extension of p_1 .

Definition 2.1. Let $q \in C_H$. If for each $\varepsilon > 0$, $(\varepsilon < H)$ there exists a number $\eta = \eta(\varepsilon)$ and a solution $p(\overline{S_{x_0}}, q)$ of (1.1) and (1.2) such that $\|q\|_n \le \eta$ implies $\|p\|_n < \varepsilon$, then we say that the solution p is locally stable with respect to the initial measure q.

For our next theorem we need the following assumptions:

- (vii) f(x, y) is a μ -integrable function on $S_z \times B_H$ and f(x, 0) = 0, where $z > x_0$ is fixed.
- (viii) Given $\delta > 0$, there exists $\varepsilon = \varepsilon(\delta) > 0$ such that $|f(x, y_1) f(x, y_2)|_m \le \delta |y_1 y_2|_m$ whenever $|y_1|_m, |y_2|_m \le \varepsilon$.

Theorem 2.4. Let the assumptions (vii) and (viii) hold. Then there exists a number $\varepsilon_0 > 0$, such that for every ε , $0 < \varepsilon < \varepsilon_0$, and a fixed

number $b \in (0, 1)$, there is a unique solution $p(\overline{S_{x_0}}, q)$ of (1.1) and (1.2) satisfying $\|p\|_n < \varepsilon$, wherever $\|q\|_n < b\varepsilon$.

Proof. Let $\delta = \frac{1-b}{k_0}$, where $k_0 = \mu(\overline{x_0z})$. Corresponding to this δ , there exists by (vii) a number $\epsilon_0 > 0$, such that

$$|f(x, y_1) - f(x, y_2)|_m \le \delta |y_1 - y_2|_m$$
 (2.7)

whenever $|y_1|_m$, $|y_2|_m \le \varepsilon_0$.

Now for any ϵ , $0 < \epsilon < \epsilon_0$, define

$$S(\varepsilon) = \{ p \in ca(S_z, M_z) : || p ||_p \le \varepsilon \}.$$

Let $p \in \overline{S}(\varepsilon)$. Then by using (vii) and (2.7), we obtain

$$|f(x, p(\overline{S_{xw}}) - f(x, 0)|_m < \delta \varepsilon.$$
 (2.8)

Define an operator T on $\overline{S}(\varepsilon)$ by

$$(Tp)(E) = q(E), E \in M_0$$

$$(Tp)(E) = \int_{E} f(x, p(\overline{S_{xw}})) d\mu, E \subset \overline{x_0 z}.$$
 (2.9)

For $E \subset M_z$, there exist two disjoint sets E_1 and E_2 in M_z such that

$$E = E_1 \cup E_2, \quad E_1 \in M_0, \quad E_2 \subset \overline{x_0 z}.$$
 (2.10)

Hence for $E \in M_z$, we obtain from (2.9) and (2.10)

$$\left\| \left. Tp(E) \right\|_{m} \leq \left\| \left. q \right\|_{n}(E_{1}) + \int_{E_{2}} f \left| x, \ p(\overline{S_{xw}}) \right|_{m} d\mu \right.$$

which implies that

$$||Tp||_n \le ||q||_n + \delta.\epsilon.\mu(\overline{x_0z}) \le b\varepsilon + (1-b)\varepsilon = \varepsilon,$$

since $||q|| \le b\varepsilon$, and $\delta = \frac{1-b}{\mu(x_0z)}$.

This shows that T maps $\overline{S}(\varepsilon)$ into self. It can also be verified that, T is a contraction operator on $\overline{S}(\varepsilon)$. By an application of contraction mapping principle, there exists a unique solution $p(\overline{S_{x_0}}, q)$ of (1.1) and (1.2) satisfying $\|p\|_n < \varepsilon$, whenever $\|q\|_n \le b\varepsilon$.

This completes the proof.

Remarks. (i) Different types of norms are used in this paper in order to meet certain requirements on the operator T defined in Theorems 2.1 and 2.4. Other convenient norms may also be used.

(ii) Theorems 2.1 and 2.3 can also be established when p and μ are complex vector measures, by defining S_x , $\overline{S_x}$ and B_H suitably.

References

- [1] P. K. Jain and V. P. Gupta, Lebesgue Measure and Integration, Wiley Eastern Limited, 1987.
- [2] W. Rudin, Real and Complex Analysis, McGraw-Hill Series in Higher Math., 1974.
- [3] R. R. Sharma, Existence of solution of abstract measure differential equations, Proc. Amer. Math. Soc. 35 (1972), 129-136.

Department of Mathematics Faculty of Science King Abdul-Aziz University P. O. Box 30305 Jeddah 21477, Saudi Arabia