2-Pentyne Complexes of Molybdenum (II) and Tungsten (II)

Mutlaq Al-Jahdali

Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia E-mail: Mutlaqaljahdali@hotmail.com

ABSTRACT. Treatment of $[MI_2(CO)_3(NCMe)_2](M = Mo, W)$ with two equivalents of EtC_2Me in CH_2Cl_2 at $0C^\circ$ yields the bis (2-Pentyne) complexes $[MI_2(CO)(NCMe)(\eta^2-EtC_2Me)_2]$ (1 and 2). complexes. 1 and 2 react with two equivalents of PPh₃ in CH_2Cl_2 to give the complexes $[MI_2(CO)(PPh_3)_2(\eta^2-EtC_2Me)]$ (3 and 4).

Reaction of 1 and 2 with an equimolar amount of Ph_2P (CH₂)_n PPh₂ to give [MI₂(CO){(Ph₂P(CH₂)_nPPh₂}(η^2 -EtC₂Me)] (for M = MO, W; n = 1-4) (5-12).

Introduction

The ability of alkyne ligands to act as four-electron donor ligands to transitionmetal centers has been well illustrated in the alkyne complexes of molybdenum (II) and tungsten (II)^[1,2]. Although a number of 2-butyne, methyl propyne, phenylacetylene and related alkyne complexes of molybdenum (II) and tungsten (II) have been prepared^[3-20].

Recently, many 3-hexyne derivatives have been reported^[21-26] these include the dimeric tungsten complex [{W(μ -Br)Br(CO) (η^2 -EtC₂Et)₂}₂]^[21]; molybdenum dichloro and dibromophosphine complexes [MoX₂ (CO) L₂(η^2 -EtC₂Et)] (X = Cl, L = PPh₃, X = Br, L = PEt₃, PPh₃, X = Cl, Br, L₂ = dppe)^[22] and the bis (dially dithiocarbamate) complexes [Mo(CO) (S₂CNEt₂)₂(η^2 -EtC₂-Et)]^[23] and [Mo(η^2 -PhC₂H) (η^2 -EtC₂Et) (S₂CNMe₂)₂]^[24].

In 1988, Baker and others reported the synthesis and x-ray crystal structures of the tungsten bis (alkyne) complexes $[WI_2(CO) (NCMe) (\eta^2 - RC_2R)_2]$ (R = Me, Ph), and also described the synthesis and crystal structures of the related

molybdenum complexes [MoI₂ (CO) (NCMe) $(\eta^2 - RC_2R)_2$] (R = Me, Ph)^[25]. The chemistry of [MI₂(CO) (NCMe) $(\eta^2 - RC_2R)_2$] (M = Mo, W; R = Me, Ph) with both neutral and anionic ligands has been studied in details^[27].

In 1999, crystal structures of $[WI_2(CO) (PPh_3)_2(\eta^2 - EtC_2Et)]$ and $[WI_2(CO) (Ph_2P(CH_2)_3PPh_2] (\eta^2 - EtC_2Et)]$ was determined and investigated^[28].

In 2000, Mutlaq and others synthesized many derivatives of 3-hexyne complexes including phosphines and phosphates groups with some crystal structures^[29-31]. P.K. Baker *et. al* prepared the nitrile exchanged products, [WI (CO)L{P(OⁱPr)₃}₂(η^2 -MeC₂Me)] [BPh₄] from reaction of [WI(CO) (NCMe){P(OⁱPr)₃}₂(η^2 -MeC₂Me)] [BPh₄] and L{L = Net, NCⁱPr, NC^tBu, NCPh, NCCH₂Ph, 1,2-C₆H₄(NCCH₂)₂, NCCH₂(C₄H₃S-3)}; and the complexes for L = NCⁱPr, NC^tBu, NCCH₂Ph, 1,2-C₆H₄ (NCCH₂)₂ have all been crystal crystallographically characterized^[32].

In 2003, Oktay and others, reacted pentacarbonyl (η^2 -bis(trimethylsilyl) ethyne) tungsten(0), [W(CO)₅(η^2 -btmse)] with tricycle hexylphosphine PCy₃ to yield two stable endoproducts which could be isolated and fully characterized by using the single crystal x-ray diffractometry^[33].

In this paper we described the first 2-Pentyne diiodo complexes [MI₂ (CO) (NCMe) (η^2 -EtC₂Me)₂] (M = Mo, W) and their reactions with phosphine groups.

Experimental

Physical Measurements and Instruments

Elemental analysis (C, H and N) were determined by department of chemistry, King Abdulaziz University of Jeddah. Using a Carlo Erba Elemental Analysis MOD 1108 (Using helium as carrier gas). Infrared spectra were obtained by CHCl₃ films between NaCl plates and recorded on a Perkin-Elmer 1430 ratio recording IR spectrophotometer.

¹H, ¹³C, and ³¹P NMR spectra were recorded on a Bruker AC 500 MH_z NMR spectrometer. ¹H and ¹³C NMR spectra were referenced to SiMe₄, whereas ³¹P NMR spectra were referenced to 85% H₃PO₄.

Reagents and Materials

All reactions and purifications were carried out under an atmosphere of dry nitrogen using standard vacuum/chlenk line techniques. The complexes $[MI_2 (CO)_3 (NCMe)_2] (M = Mo,W)$, were prepared by the published method^[27]. All solvents and chemicals used were of reagents grade quality and were purchased from commercial sources. The solvents used were dried and distilled before use.

Preparation of $[MoI_2(CO)(NCMe)(\eta^2-EtC_2Me)_2]$ (1)

To a stirred solution of $[MoI_2(CO)_3 (NCMe)_2]$ (0.5 g, 0.96 mmol) in 25 ml of CH_2Cl_2 at 0°C 2-Pentyne (0.13 g, 0.20 ml, 1.9 mmol) was added. The solution was stirred at room temperature for 24 h. Filtration and removal of the solvent in vacuum gave crystalline powder which was recrystallized from dichloromethane and diethyl ether giving pure $[MoI_2(CO) (NCMe)(\eta^2-EtC_2Me)_2]$ (Yield = 0.35 g, 0.66%).

In a similar reaction of $[WI_2(CO)_3(NCMe)_2]$ with two equivalents of 2-Pentyne in CH_2Cl_2 at 0°C gave the bis(2-Pentyne) complex $[WI_2(CO) (NCMe) (\eta^2-EtC_2Me)_2]$ (2). See Table 1 for physical and analytical data .

Compound no.	Colour	olour Yield		Analytical data found (calcd)		
		70	С	Н	N	
$[MoI_2(CO) (NCMe) (\eta^2 - EtC_2Me)_2] (1)$	Brown	66	27.9 (28.1)	3.2 (3.4)	2.1 (2.5)	
$[WI_2(CO) (NCMe) (\eta^2 - EtC_2Me)_2] (2)$	Yellow	72	24.6 (24.3)	3.1 (2.9)	2.4 (2.2)	
$[MoI_{2}(CO) (PPh_{3})_{2} (\eta^{2}-EtC_{2}Me)] (3)$	Green	66	51.2 (51.6)	4.3 (4.5)		
$[WI_2(CO) (PPh_3) 2(\eta^2 - EtC_2Me)] (4)$	Green	72	47.1 (47.3)	3.9 (4.1)		
$[MoI_{2}(CO) \{Ph_{2}P(CH_{2})PPh_{2}\} (\eta^{2}-EtC_{2}Me)] (5)$	Green	55	47.8 (48.1)	4.2 (4.4)		
$[WI_{2}(CO) \{Ph_{2}P(CH_{2})PPh_{2}\} (\eta^{2}-EtC_{2}Me)] (6)$	Green	48	43.3 (43.0)	4.1 (3.9)		
$[MoI_{2}(CO) \{Ph_{2}P(CH_{2})_{2}PPh_{2}\} (\eta^{2}-EtC_{2}Me)] (7)$	Green	57	48.6 (48.8)	4.1 (4.5)		
$[WI_{2}(CO) \{Ph_{2}P(CH_{2})_{2}PPh_{2}\} (\eta^{2}-EtC_{2}Me)] (8)$	Green	43	44.1 (43.9)	4.3 (4.1)		
$[MoI_{2}(CO) \{Ph_{2}P(CH_{2})_{3}PPh_{2}\} (\eta^{2}-EtC_{2}Me)] (9)$	Green	61	49.7 (49.5)	4.9 (4.7)		
$[WI_{2}(CO) \{Ph_{2}P(CH_{2})_{3}PPh_{2}\} (\eta^{2}-EtC_{2}Me)] (10)$	Green	36	44.8 (44.6)	4.3 (4.2)		
$[MoI_{2}(CO) \{Ph_{2}P(CH_{2})_{4}PPh_{2}\} (\eta^{2}-EtC_{2}Me)] (11)$	Green	52	49.8 (50.1)	4.6 (4.9)		
$[WI_{2}(CO) Ph_{2}P(CH_{2})_{4}PPh_{2}\} (\eta^{2}-EtC_{2}Me)] (12)$	Green	39	45.4 (45.2)	4.7 (4.4)		

TABLE 1.	Physical	and analyti	cal data ^a	for 2-Pent	yne comp	lexes. 1-12.

^aCalculated values in parentheses.

Preparation of $[MoI_2(CO)(PPh_3)2(\eta^2-EtC_2Me)]$ (3)

To a stirred solution of $[MoI_2(CO) (NCMe) (\eta^2-EtC_2Me)_2]$ (0.2 g, 0.36 mmol) in CH_2Cl_2 (20 cm³) PPh₃ (0.19 g, 0.7 mmol) was added for 48 h, then filtration and removal of solvent in vacuum yielded a brown crystalline powder which was recrystallised from CH_2Cl_2/Et_2O to give pure $[MoI_2(CO) (PPh_3)_2(\eta^2-EtC_2Me)](3)$; (yield = 0.23 g, 66%). A similar reaction of $(WI_2(CO)(NCMe) (\eta^2-EtC_2Me)_2]$ with two equivalents of PPh₃ in CH_2Cl_2 at room temperature gave the complex $[WI_2(CO) (PPh_3)_2(\eta^2-EtC_2Me)]$ (4). See table 1 for physical and analytical data.

Preparation of $[MoI_2(CO){Ph_2P(CH_2)PPh_2}(\eta^2-EtC_2Me)]$ (5)

To a stirred solution of $[MoI_2(CO) (NCMe) (\eta^2-EtC_2Me)_2]$ (0.2 g, 0.36 mmol) in CH₂Cl₂ (15 cm³) Ph₂P(CH₂)PPh₂. (0.14 g, 0.36 mmol) was added. After 24 h filtration and removal of solvent in vacuum gave a crystalline powder of $[MI_2(CO) \{Ph_2P(CH_2)PPh_2\}(\eta^2-EtC_2Me)]$ (5) (yield = 0.15 g, 55%).

Similar reactions of equimolar quantities of $[MI_2(CO)(NCMe)(\eta^2-EtC_2Me)_2]$ and $Ph_2P(CH_2)_nPPh_2$ in CH_2Cl_2 at room temperature gave the complexes (M = Mo, n = 2-4; M = W, n = 1-4) (6-12). See table 1 for physical and analytical data (6-12).

Results and Discussion

The starting materials used in this research $[MI_2(CO)_3(NCMe)_2]$ (M = Mo,W) were prepared by treating the zero-valent complexes *fac*- $[M(CO)_3(NCMe)_3]$ (prepared *in situ*) with one equivalent of I₂ at 0°C^[27]. Reaction of $[MI_2(CO)_3(NCMe)_2]$ (M = Mo,W) with two equivalents of EtC₂Me in CH₂Cl₂ at room temperature gave good yields of the bis (2-Pentyne) complexes $[MI_2(CO) (NCMe)(\eta^2-EtC_2Me)_2]$ (1 and 2).

Both complexes 1 and 2 were characterized by elemental analysis (C, H and N) (Table 1), I R (Table 2) and ¹HNMR spectroscopy (Table 3).

Both complexes are air-sensitive in solution, but can be stored under nitrogen or argon in the solid state for an indefinite period. The complexes are very soluble in polar organic solvents such as CH_2Cl_2 and $CHCl_3$, but only slightly soluble in diethyl ether.

The IR spectra for 1 and 2 show carbonyl stretching bands at $v(C \equiv O) = 2053$ and 2057 cm⁻¹ respectively. These are in very similar positions to their related 3-Hexyne derivatives [MI₂(CO) (NCMe) (η^2 -EtC₂Et)₂] { $v(C \equiv O) = 2059$ and 2056 cm⁻¹ for M = Mo and W respectively}^[28] and also similar to 2-butyne de-

rivatives [MI₂(CO) (NCMe) $(\eta^2 - MeC_2Me)_2$] {v(C = O) = 2061 cm⁻¹ and 2050 cm⁻¹ for M = Mo and W respectively}^[2,25].

The nitrile bands $v(C \equiv N)$ at 2289 and 2256 cm⁻¹ respectively, where the an acetonitrile is acting as a σ -donor ligand^[34], and the weak alkyne stretching bands at 1609 and 1629 cm⁻¹ for 1 and 2 are lower than for the uncoordinated alkyne which is expected since there is back-donation of electron density from filled metal d-orbitals to empty π^* -orbitals on the 2-pentyne ligands. The structure of [MI₂(CO)(NCMe)(η^2 -EtC₂Me)₂] is very likely the structure as shown in Fig. (1).

FIG. 1. Proposed structures of $[MI_2(CO)(NCMe)(\eta^2-EtC_2Me)_2]$ (1and 2).

Since the spectroscopic properties are closely related to the previously reported bis (alkyne) complexes of molybdenum (II) and tungsten (II)^[1,2,25,35,36]. The ¹HNMR spectra of 1 and 2 show two different sets of CH₂ groups, which confirmed the structure shown in Fig. 1. At room temperature ¹³CNMR spectra of 1 and 2 show alkyne carbon contact resonance at $\delta = 175.12$ and 167.35 (for 1) and 161.30 and 172.45 (for 2).

The resonances observed for complexes 1 and 2 are in accord with two alkynes donating a total of four electrons to the metal centre, which also enables the complexes to obey the effective atomic number rule.

Treatment of $[MI_2(CO)(NCMe)(\eta^2-EtC_2Me)_2]$ (M = Mo, W) with two equivalents of PPh₃ in CH₂Cl₂ at room temperature gives the complexes $[MI_2(CO)(PPh_3)_2(\eta^2-EtC_2Me)]$ (3 and 4).

Complexes 3 and 4 have also been characterized by elemental analysis (Table 1); IR (Table 2), ¹HNMR (Table 3) and ³¹P.NMR spectroscopy (Table 4).

Complexes 3 and 4 are more stable in solution, but very much less soluble than bis (2-Pentyne) complexes (1 and 2). They are slightly soluble in CH_2Cl_2 and $CHCl_3$. Hence, it was difficult to obtain the ¹³CNMR spectra.

Compound no.	$\nu(C \equiv O)$ cm^{-1}	$v(C \equiv N)$ cm^{-1}	$v(C \equiv C)$ cm^{-1}
(1)	2053(s)	2289(w)	1609(w)
(2)	2057(s)	2256(w)	1629(w)
(3)	1951(s)	1951(s)	1665(2)
(4)	1940(s)	_	1656(w)
(5)	1943(s)	_	1659(w)
(6)	1932(s)	_	1607(w)
(7)	1933(s)	_	1653(w)
(8)	1942(s)	_	1655(w)
(9)	1935(s)	_	1640(w)
(10)	1935(s)	_	1637(w)
(11)	1936(s)	_	1656(w)
(12)	1929(s)	-	1653(w)

TABLE 2. Infrared data^a for 2-Pentyne complexes 1-12.

^aspectra recorded in CHCl3 as thin films between NaCl plates; S = strong, W = weak.

TABLE 3. ¹H NMR data for selected 2-Pentyne complexes.

Complex no.	¹ H NMR (δ) ppm
(1)	3.2-3.4 (m, 2H, C = C CH ₂ ; 2.8-3.1 (br, m, 2H, CH ₂); 2.70 (S, 3H, NC CH ₃); 2.5 (S, 3H, CH ₃ -C = C); 1.1-1.3(t, 6H, CH ₃ CH ₂).
(2)	3.1-3.4 (m, 2H, CH ₂); 2.9-3.15 (m, 2H, CH ₂); 2.8(S, 3H, NCCH ₃); 2.5 (S, 6H, CH ₃ -C \equiv C); 1.3 (t, 6H, CH ₃ CH ₂).
(3)	7.0-7.65 (br, m, 30H, Ph); 2.6-3.4 (br, m, 2H, CH ₂); 1.6-2.5 (S, 3H, CH ₃); 0.8-1.3 (t, 3H, CH ₂ CH ₃).
(4)	7.1-7.6 (br, m, 30H, Ph); 2.5-3.4 (br, m, 2H, CH ₂); 1.5-2.5 (S, 3H, CH ₃); 0.7-1.2 (t, 3H, CH ₂ CH ₃).
(5)	6.9-7.3 (br, m, 20H, Ph); 4.5-4.8 (q, 2H, Ph.P-CH ₂); 3.6-3.6 (q, 2H, CH ₂); 2.9-3.1 (S, 3H, CH ₃); 1.0-1.25 (t, 3H, CH ₃ CH ₂).
(6)	6.8-7.2 (br, m, 20H, Ph); 4.4-4.7 (q, 2H, PhP-CH ₂); 3.4-3.7 (q, 2H, CH ₂); 2.9-3.2 (S, 3H, CH ₃); 1.1-1.2 (t, 3H, CH ₃ CH ₂).
(7)	6.9-7.3 (br, m, 20H, Ph); 4.4-4.6 (br, m, 4H, Ph.P, CH ₂ CH ₂); 3.3-3.7 (q, 2H, CH ₂); 2.8-3.2 (S, 3H, CH ₃); 1.2-1.3(t, 3H, CH ₃ CH ₂).
(8)	7.1-7.8 (br, m, 20H, Ph); 4.3-4.5 (br, m, 4H, PhP, CH ₂ <u>CH₂</u>); 3.2-3.6 (q, 2H, CH ₂); 2.5-3.1 (S, 3H, CH ₃); 1.3-1.4 (t, 3H, CH ₃ CH ₂).
(9)	7.3-7.9 (m, 20H, Ph); 3.4-3.6 (q, 2H, C \equiv C CH ₂); 3.4 (br, m, 4H, Ph ₂ PCH ₂); 2.6 (S, 3H, C \equiv C CH ₃); 1.2 (t, 3H, CH ₃); 0.9-1.1 (br, m, 2H, Ph ₂ PCH ₂ <u>CH₂</u>).

TABLE	3.	Contd.

Complex no.	¹ H NMR (δ) ppm
(10)	7.4-8.0 (m, 20H, Ph); 3.5-3.7 (q, 2H, C \equiv C CH ₂); 3.1-3.3 (br, m, 4H, Ph ₂ PCH ₂); 2.7 (S, 3H, C \equiv C CH ₃); 1.3 (t, 3H, CH ₃); 0.8-1.1 (br, m, 2H, Ph ₂ PCH ₂ <u>CH₂</u>).
(11)	7.1-7.8 (br, m, 20H, Ph); 3.3-3.5 (m, 2H, Ph ₂ PCH ₂); 3.2 (q, 2H, C \equiv C CH ₂) 2.6-2.9 (br, m, 4H, Ph ₂ PCH ₂ <u>CH₂</u>); 2.4 (S, 3H, C \equiv C-CH ₃); 1.0-1.3 (t, 3H, C \equiv C-CH ₂ CH ₃).
(12)	7.2-8.0 (br, m, 20H, Ph); 3.2-3.5 (m, 4H, PhPCH ₂); 3.3 (q, 2H, C \equiv C <u>CH₂</u>); 2.7-3.0 (br, m, 4H, Ph ₂ PCH ₂ <u>CH₂</u>); 2.3 (S, 3H, C \equiv C- <u>CH₃</u>); 1.1-1.35 (t, 3H, C \equiv C CH ₂ <u>CH₃</u>).

^aspectra recorded in CDCl³ (25°C) and referenced to SiMe₄; S = Singlet; br = broad; d = doublet; m = multiplet; t = triplet; q = quartet.

TABLE 4. ¹³C NMR data^a (δ) for selected 2-Pentyne complexes.

Complex no.	¹³ C NMR (δ) ppm
(1)	6.65 S, CH ₃ , CN); 12.36, 12.80, 13.4, 14.23, 14.57, (S, CH ₂ <u>CH₃</u>); 16.7, 17.53, 17.85 (S, <u>CH₃</u> . C = C); 24.60, 27.32 (S, CH ₂); 129.85 (S, C = N); 165.36, 173.2 (S, C = C); 216.08 (S, C = O).
(2)	5.7 (S, CH ₃ , CN); 12.6, 12.76, 13.06, 13.9, 14.2 (S, CH ₂ <u>CH₃</u>); 16.3, 16.7, 17.02 (S, CH ₃ . C = C); 25.3, 26.7 (S, CH ₂); 128.50 (S, C = N); 163.62, 172.15 (S, C = C); 210.03 (S, C = O).

^Aspectra recorded in CDCl₃ (25°C) and referenced to SiMe₄. S = Singlet.

The IR and ¹HNMR spectral properties of 3 and 4 are similar to their 3hexyne and 2-butyne tungsten and molybdenum analogue, $[MI_2(CO) (PPh_3)_2 (\eta^2-MeC_2Me)]^{[35]}$ and $[MI_2(CO)(PPh_3)_2(\eta^2-EtC_2Et)]^{[28]}$; which have a carbonyl stretching band at 1951 and 1940 cm⁻¹ in the same solvent for (M = Mo and W) respectively.

The ³¹PNMR spectra for 3 and 4 have single resonances at $\delta = -2.56$ and -13.36 respectively; similar to complexes of 3-hexyne which exhibit resonances at $\delta = -2.89$ and -15.93 respectively. This suggests a trans arrangement of PPh₃ ligands^[28].

Equimolar quantities of $[MI_2(CO) (NCMe) (\eta^2 - EtC_2Me)_2]$ (M = Mo, W) and $Ph_2P(CH_2)_nPPh_2$; (n = 1-4) react in CH_2Cl_2 at room temperature to yield the mono (2-Pentyne) complexes $[MI_2 (CO) Ph_2P(CH_2)_nPPh_2]$ (η^2 -EtC₂Me)] (5-12) were fully characterized (See Tables 1 to 4).

They are intermediate in solubility between 1,2 and 3,4 and similar in sensitive to air as the previous complexes.

The colours and spectroscopic properties resemble that to 3-hexyne complexes $[MI_2 (CO) \{Ph_2P(CH_2)_nPPh_2\} (\eta^2-EtC_2Et)]^{[28]}$ as well as for 2-butyne $[MI_2 (CO) \{Ph_2P(CH_2)_nPPh_2\} (\eta^2-MeC_2Me)]^{[37]}$.

The ³¹PNMR spectra of $[MI_2(CO){Ph_2P(CH_2)_nPPh_2}(\eta^2-EtC_2Me)]$ (n = 1-4) have two resonances (Table 5) expected for a single isomer from crystal structure of $[WI_2(CO){Ph_2P(CH_2)_3PPh_2}(\eta^2-EtC_2Et)]^{[28]}$.

Complex no.	³¹ P NMR (δ) ppm
(3)	$\delta(P) = -2.56$
(4)	$\delta(P) = -13.36$
(6)	$\delta(P_A) = -24.36; \delta(P_B) = -35.27$
(9)	$\delta(P_A) = -27.72; \delta(P_B) = -36.75$
(10)	$\delta(P_A) = -22.85; \delta(P_B) = -31.24$
(11)	$\delta(P_A) = -24.13; \ \delta(P_B) = -29.72$

TABLE 5. ³¹P NMR data^a (δ) for selected 2-Pentyne complexes.

^aspectra recorded in CDCl₃ (25°C) and referenced to H₃PO₄.

Acknowledgement

Many thanks to all technicians at Chemistry Department, K.A. University, Jeddah, Saudi Arabia.

References

- [1] Templeton. J.L., Adv. Organomet. Chem. 29, 1(1989), and references cited therein.
- [2] Baker, P.K., Adv. Organomet. Chem. 40, (1996), and references cited therein.
- [3] Umland, P. and Vahrenkamp, H., Chem. Ber. 115, 3580 (1982).
- [4] Bennett, M.A. and Boyd, I.W., J. Organomet. Chem. 290, 165 (1985).
- [5] Mcdonald, J.W., Newton, W.E., Greedy, C.T.C. and Corbin, J.L., J. Organomet. Chem. 92, C25 (1975).
- [6] Mcdonald, J.W., Corbin. J.L. and Newton, W.E., J. Am. Chem. Soc. 97, 1970 (1975).
- [7] Newton, W.E., Corbin, J.L. and Mcdonald, J.W., Inorg. Synth. 18, 53 (1978).
- [8] Bottrill, M. and Green. M., J. Chem. Soc., Dalton Trans. 2365 (1977).
- [9] Allen, S.R., Baker, P.K., Barnes, S.G., Green, M., Trollope, L., Muir, L.M. and Muir, K.W., J. Chem. Soc., Dalton Trans. 873 (1981).

- [10] Davidson, J.L. and Sharp, D.W.A., J. Chem. Soc., Dalton Trans. 2531 (1975).
- [11] Braterman, P.S, Davidso, J.L. and Sharp, D.W.A., J. Chem. Soc., Dalton Trans. 241 (1976).
- [12] Guerchais, J.E., Lequere, J.L., Petillon, F.Y., Manojlovic-Muir, L., Muir, K.D. and Sharp, W.A., J. Chem. Soc., Dalton Trans. 283 (1982).
- [13] Davidson, J.L., J. Chem. Soc., Dalton Trans. 2423 (1986).
- [14] Green, M.L.H., Knight, J. and Segal, J.A., J. Chem. Soc., Dalton Trans. 2189 (1977).
- [15] Alt, H.G., J. Organomet. Chem. 127, 349 (1977).
- [16] Alt, H.G. and Schwarzle, J.A., J. Organomet. Chem. 155, C65 (1978).
- [17] Baker, P.K., Armstrong, E.M. and Drew, M.G.B., Inorg. Chem. 28, 2406 (1989).
- [18] Baker, P.K. and Kendrick. D.A.P., J. Chem. Soc., Dalton Trans. 1039 (1993).
- [19] Baker, P.K., Harman, M.E., Kendrick, D.A.P. and Hursthouse, M.B., *Inorg. Chem.* 32, 3395 (1993).
- [20] Baker, P.K., Coles, S.J., Hibbs, D.E., Meehan, M.M. and Hursthouse, M.B., J. Chem. Soc., Dalton Trans. 3995 (1996).
- [21] Davidson, J.L. and Vasapollo, G.J., Chem. Soc., Dalton Trans. 2239 (1985).
- [22] Winston, P.B., Burgmayer, S.J.N., Tonker, T.L. and Templeton, J.L., Organometallics 5, 1707 (1986).
- [23] Templeton, J.L., Herrick. R.S. and Morrow, J.R., Organometallics 3, 535 (1984).
- [24] Herrick, R.S. and Templeton, J.L., Organometallics 1, 842 (1982).
- [25] Armstrong, E.M., Baker, P.K. and Drew, M.G.B., Organometallics 7, 319 (1988).
- [26] Aimeloglou, N., Baker, P.K., Drew, M.G.B. and Meehan, M.M., Polyhedron 17, 3455 (1998).
- [27] Baker, P.K., Fraser, S.G. and Keys, E.M., J. Organomet. Chem. 309, 319 (1986).
- [28] Al-Jahdali, M., Baker, P.K. and Drew, M.G.B., J. Chemical. Cryst. 30(3), 181 (2000).
- [29] Al-Jahdali, M., Baker, P.K., Lavery, A.J., Meehan, M.M. and Muldoon, D.J., J. Molecular, Catolysis 159, 51 (2000).
- [30] Al-Jahdali, M., Baker, P.K. and Drew, M.G.B., J. of Organomet. Chem. 622, 228 (2001).
- [31] Al-Jahdali, M. and Baker, P.K., J. Organomet. Chem. 628, 91 (2001).
- [32] Baker, P.K., Drew, M.G.B. and Moore, D.S., J. Organomet. Chem. 37 (2002).
- [33] Demircan, O., Ozkar, S., Ulku, D. and Yildirim, LT., J. Organomet. Chem. 68 (2003).
- [34] Ford, P.C. and Clarke, R.E., J. Chem. Soc., Chem. Commun. 1109 (1968).
- [35] Baker, P.K., Harman, M.E., Hursthouse, M.B., Lavery, A.J., Malik, K.M.A. and Muldoo, D.J., Shawcross, A., J. Organomet. Chem. 484, 169 (1994).
- [36] Drew, M.G.B., Baker, P.K., Muldoon, D.J., Lavery, A.J. and Shawcross, A., Ga 22. Chim. Ital. 126, 625 (1996).
- [37] Armstrong, E.M., Baker, P.K., Harman, M.E. and Hursthouse, M.B., J. Chem. Soc., Dalton Trans. 295 (1989).

مركبات تناسقية من Pentyne مع الموليبدينوم (II) والتنجستن (II)

المستخلص. إن التفاعل الكيميائي بين المركبات التناسقية مع
المركبات العضوية التي تحمل الرابطة الثلاثية هي محل اهتمام اصطناع
$$[MI_2(CO)_3(NCMe)_2]$$
 عضو فلزي ، ومن هذه المعقدات تفاعل [2(OO)_3(NCMe)
(1 and 2) $[MI_2(CO)(NCMe)$ لتعطي (2-Pentyne) مع (2-Pentyne) (1
 $(M=Mo, W)$ (2-Pentyne) مع (2-Pentyne) مع متصلات أخرى مثل :
 $[n^2-EtC_2Me)_2]$ (n^2-EtC_2Me) تعطي على التوالي:
 $[MI_2(CO)(PPh_3)_2(\eta^2-EtC_2Me)]$ (3 and 4) & $[MI_2(CO)(PPh_2P)_2(\eta^2-EtC_2Me)]$
 $(for M=Mo, W, n=1-4) (5-12)$