THE EFFECT OF TEMPERATURE ON SOME MECHANICAL PROPERTIES OF ZIRCONIA AS AN IMPLANT MATERIAL

Thesis

Submitted for partial fulfillment of Master Degree In PROSTHODONTICS

BY

Ahmed Bayomy EI-Kotb El-Okel

(**M.B.**, **B.Ch.**)

FACULTY OF DENTISTRY TANTA UNIVERSITY 2000

SUPERVISORS

Dr. Hoda M. Amin Rashad

Assistant Professor of Prosthodontics Faculty of Dentistry, Tanta University

Dr. Azza A. EI-Segai

Lecturer of Prosthodontics, Faculty of Dentistry, Tanta University

Prof. Dr. Abd EI-Raouf Tawfik

Professor of Solid States. Faculty of Science, Tanta University

Dr. Ahmed M. EI-Assal

Assistant Professor of Production Engineering Technology Benha High Institute Of Technology

SUMMARY

This study was performed to evaluate some mechanical properties of new composition of partially stabilized zirconia as an implant material sintered by two different degrees of temperature (1350°C and 1200°C).

This properties include:

- 1- Flexure strength.
- 2- Compressive strength.
- 3- Shear strength.
- 4- Modulus of elasticity.
- 5- Thermal conductivity.

Material:

The material used in this study is a partially stabilize zirconia that composed of 3 powders (zirconium oxide 80%, yttrium oxide 3% and titanium oxide 17%).

Tests and Testing Devices:

For each test in this study, specimens were divided according to sintering temperature into :

- Group A: Sintered at 1200 °C.
- Group B: Sintered at 1350 °C.

The Findings:

There was a statistical significant difference between the mean values of the mechanical properties of specimens sintered at 1350°C and that sintered at 1200°C. The data of flexure,

compressive and shear strength, modulus of elasticity and thermal conductivity of partially stabilized zirconia sintered at 1350°C was greater than that processed at 1200°C.

Conclusions:

From this study it can be concluded that:

• Addition of yttrium oxide and titanium oxide in such ratio participated in lowering sintering temperature of partially stabilized zirconia.

• 1350 °C sintering temperature seems to be a suitable degree for gaining favourable mechanical properties than 1200 °C.

• The change in sintering temperature with selected titanium oxide, yttrium oxide and zirconium oxide ratio played an important role in improving partially stabilized zirconia properties.

• Partially stabilized zirconia is a suitable material for the artificial dental root from the viewpoint of material technology and has a sufficient strength in occlusion.