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Abstract. This paper presents the design steps and carries a comparative study between three Linear Matrix Inequality (LMI)-based 
iterative multivariable Proportional-Integral-Derivative (PID) controllers; PID design using H∞-norm, named Hi, PID design using 
H2-norm, named H2, of the system transfer function, PID design with Maximum Output Control (MOC), named Max, and the 
classical LMI-based robust output feedback controller using H∞-norm, named ROB. Multivariable PID is considered here because of 
its wide use in the industry, simple structure and easy implementation. It is also preferred in plants of higher order that cannot be 
reduced and thus require a controller of higher order such as is the case for the classical robust H∞ output feedback controller whose 
order is the same as that of the plant. LMI technique is selected because it allows easy inclusion of divers system constraint 
requirements that should be fulfilled by the controller, and thus make its design very efficient. The duty of each of the controllers is 
to drive a single-generator connected to a large power system via a transformer and a transmission line. The generator is equipped 
with its speed/power (governor) and voltage (exciter) control-loops that are lumped in one block. The errors in the terminal voltage 
and in the output active power, with respect to their respective references, represent the controller inputs and the generator-exciter 
voltage and governor-valve position represent the controller outputs. A comparative study is carried out using the named controllers 
(Hi, H2, Max, ROB). Divers tests are applied, namely, step-change and tracking in the references of the controlled variables, and 
variation in some plant parameters, to demonstrate the controllers effectiveness. Encouraging results are obtained that motivate for 
further investigations. 
 
Keywords: Linear matrix inequality, power system, robust output feedback control, H∞-control with PID, H2-control 
with PID, Maximum output with PID. 
 
List of Symbols 
 
Vd, Vq  stator voltage in d-axis and q-axis circuit 
Vt terminal voltage 
ψfd  field flux linkage  
xad  stator-rotor mutual reactance  
xfd  self reactance of filed winding  
Vfd field voltage 
rfd field resistance  
e  busbar voltage resistance  
Ue  exciter input  
δ rotor angle 
Te/Tm electrical / mechanical torque 
Ps  steam power  
H   inertia constant  
ω  angular frequency of rotor  
ω0  angular frequency of the infinite busbar   
Kd  mechanical damping torque coefficient     
Td  damping torque coefficient due to damper windings  
Pt real power output at the generator terminals   
τe  exciter time constant  
τg  governor valve time constant  
τb turbine time constant  
Ug governor input  
Gv  governor valve position  
Kv  valve constant 
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1. Introduction 
 
In a power system, the regulators of the synchronous machines determine power system voltage/frequency profile. 
Conventional regulators [1-3] such as IEEE types are characterized by low frequency oscillations and slow response. 
Other control signals are usually added to improve the performance but at the expense of a more complicated system.  
 
Conventional Proportional-Integral-Derivative (PID) controller is widely used in the  industry owing to its simple 
structure, easy implementation and found to be adequate for most plants. However,  it is not robust to disturbances in 
the controlled variables and system parameters change [4-6]. Variable Structure Control (VSC) technique represents a 
robust control technique but has a main drawback, the chattering (higher switching). Because of the limitation of the 
physical actuators, it is impossible to achieve the necessary higher switching. Besides, the chattering appears in the 
control input and makes such controller not attractive unless remedies are applied but at the expense of lowering the 
controller robustness [7-10]. Optimal control theory [4,11-12] was also investigated and applied in industrial processes. 
State-feedback control is attractive but requires all states to be measurable that is usually not the case unless observers 
are used that add to the complexity of the overall system. This burden is reduced by using output feedback control 
instead. The later requires only measurable system outputs to be used and thus made more attractive in industrial control 
engineering area. Thus, efficient controllers are desirable to improve the power system performance through the control 
of the generator voltage and speed, and to overcome limitations in stability boundaries caused by the use of larger 
generator size and longer transmission lines. Modern control strategies involving intelligent techniques such as fuzzy 
logic control and neural networks, represent attractive approaches but have also limitations [9,13-14]. Recently, Linear 
Matrix Inequality (LMI) technique [18-20] has emerged as powerful design tools. Many control problems and design 
specifications have LMI formulations. This is especially true for Lyapunov-based analysis and design, but also for 
optimal LQG control (H2-control), robust H∞-control, etc. The main strength of LMI formulations is its ability to 
combine various design constraints and/or objectives in a numerically tractable manner. The LMI theory offers 
powerful tools to attack different objectives such as: 

• H∞ performance (for tracking, disturbance rejection, or robustness aspects) 
• H2 performance (for LQG aspects) 
• Robust pole placement specifications to ensure fast and well-damped transient responses 
• Maximum Output Feedback (MOC) control 

In robust control, it is customary to formulate the design specifications as abstract disturbance rejection objectives. The 
performance of a control system is then measured in terms of the closed-loop RMS gain from disturbances to outputs. 
While some tracking and robustness are best captured by an H∞ criterion, noise insensitivity is more naturally expressed 
in LQG terms (H2-performance), and transient behaviors are more easily tuned in terms of the system closed-loop 
damping. Classical H∞-based robust output-feedback controller is widely preferred when the minimization of the effect 
of the disturbance on selected outputs is sought. However, due to its complexity in implementation and its high order, it 
is not highly desirable [8,9].  
 
This paper presents the design steps and a comparative study between three iterative LMI-based iterative multivariable 
PID controllers: PID using H∞-norm, abbreviated Hi; robust PID using H2-norm, abbreviated H2; of the system transfer 
function; PID with Maximum Output Control (MOC), abbreviated Max, and the classical LMI-based robust H∞ output 
feedback controller, abbreviated ROB [21-23]. The main task of each of the controllers is to drive a single-generator 
connected to a large power system via a transformer and a transmission line [11]. The generator is equipped with its 
speed/power (governor) and voltage (exciter) control-loops. To show the effectiveness of each controller and to carry a 
comparative study, divers tests were applied, namely, step-change and tracking in the references of the controlled 
variables, and variation in some plant parameters.  
 

2. System Modeling  
 
Figure 1 shows the block diagram of the sample controlled power system that comprises a steam turbine driving a 
synchronous generator which is connected to an infinite bus via a step-up transformer and a transmission line. The 
output real power Pt and terminal voltage Vt at the generator terminals are measured and fed to the controller. The 
outputs of the controller (system control inputs) are fed into the generator-exciter and governor-valve. 
In the simulation studies described here, the nonlinear equations of the synchronous generator are represented by a 
third–order nonlinear model based on park's equations. The steam turbine, governor valve and exciter are each 
represented by a first order-order model. The model equations are as follows [11]. The data are shown in the Appendix. 
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The output y1, y2 may be expressed in terms of these state variables by  
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A linear Multi-Input Multi-output (MIMO) model of the generator system is required to design a controller for such 
system. It is derived from the system nonlinear model by linearizing the nonlinear equations (1)-(3) around a specific 
operating point. The linear state-space model (4) is derived next where the variables shown represent small 
displacements around the selected operating point.  

 
Fig. 1 Controlled sample power system 
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Where 

[ ]TmTsPfdEfdx ψδδ &= : state variables vector 

[ ]TgUeUu = :   control input vector 

[ ]TtVtPy = :    output measurement vector 
 

312111 xKxKPt += :   output power 
 

314113tV xKxK += :   terminal voltage 
 
      

3. Robust H∞ Output Feedback Controller 
 
Figure 2 shows a modified representation of the output-feedback control block diagram.  

 

 
Fig. 2 Output feedback block diagram 

 
Where P(s) represents the plant whereas K(s) represents the controller to be designed. Let 
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be the state-space realizations of the plant P(s) and the controller K(s), respectively, and let 
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be the corresponding closed-loop state-space equations with 
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The design objectives for finding K(s) is to minimize the H∞-norm of the closed-loop transfer function G(s) from w to z, 
i.e.,   

CL+DCLB-1)CL (s - ACLG(s)=C       (9) 
satisfies 
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using LMI technique [12,15-17]. This can be fulfilled if and only if there exists a symmetric matrix X such that the 
following LMIs are satisfied 
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4. PID Design with H∞ 

 
Consider the linear time-invariant state-space system given by 
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Where  
x   state variables 
u   control inputs 
y   outputs 
A, B and C  matrices with appropriate dimensions   
F1, F2, F3  matrices to be designed.    
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If )3( CBFI − is invertible then from (12) and (16), one gets 
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Where  
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The problem of PID controller design reduces to that of Static Output Feedback (SOF) [21-22] controller design for the 
following system: 
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Once F is found, the original PID gains can be recovered from 
1
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The design problem of  PID controllers under H∞ performance specification is handled by first considering the system 
(11) rewritten as (Fig. 3): 
 

 
Fig. 3 Iterative PID block diagram 
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where  
x     state variables 
u    control inputs  
w    disturbance/reference inputs  
ys    sensed/measured outputs 
yr   regulated/controlled outputs 
A, B1, B2, Cs, and Cr  matrices with appropriate dimensions. 

    
The static output feedback H∞ control problem is to find a controller of the form  

sF yu =        (21) 
such that the H∞-norm of the closed-loop transfer function from w to yr is stable and limited as follows: 

γ<∞||||
rwyG       (22) 

 
Algorithm 1, shown in Appendix 2, is used to solve for the dynamics of the newly obtained SOF control system: 
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Thus, once the feedback matrices )3,2,1( FFFF = are obtained using Algorithm 1 as applied to system (23), the original 

PID gains ),,( 321 FFFF = can be recovered from (19). 
 

5. PID Design with H2 
 
The design problem of PID controllers under H2 performance specification is investigated, first, by studying the static 
output feedback (SOF) case and then extending the result to the PID case. As before, consider the system: 
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Assuming that A is stable then for the system closed-loop transfer function 
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the classical result within Lyapunov approach gives 
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The Static Output Feedback H2 control (SOFH2) problem is to find a control of the form 

  sFyu =        (30) 
such that the closed-loop transfer function, from w to yr, is stable and 
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with γ >0 and ||.||2 denotes the 2-norm of the system transfer matrix. 
 
The H2-performance index, for system (20) rewritten as  
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can be achieved by a SOF controller if the matrix inequalities: 
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An iterative LMI algorithm, Algorithm 2, for solving H2-SOF control is developed in [21] and shown in Appendix 3 
where  
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The PID design with H2 specifications converts to a SOF control for the dynamics of the newly obtained system: 
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Thus, once the feedback matrices )3,2,1( FFFF = are obtained using Algorithm 2 as applied to system (33), the 

original PID gains ),,( 321 FFFF = can be recovered from (19). 
 

6. Maximum Output Control with PID 
The design problem of a PID controller under the performance requirement that the system output yr is smaller than a 
specified value σ when the input signal w is bounded, is known as Maximum Output Control (MOC) problem. To 
handle such problem, consider the system  
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With x(0)=0. The Static Output Feedback Maximum Output Control (SOFMOC) problem is to find a control of the 
form  
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such that the maximum regulated output Yr,max, from w to yr, of the closed-loop system, under the command input w,  
satisfies 
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Where PsFCBAPPT
sFCBA 2)2()2(3 τ++++=∑ . 

 
An iterative LMI algorithm (Algorithm 3) for solving SOFMOC is developed in [21-22] and shown in Appendix 4.  
 
The PID design with MOC specifications converts to a SOFMOC for the dynamics of the newly obtained system  
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As before, to recover the original PID gains ),,( 321 FFFF = from the feedback matrices )3,2,1( FFFF = , the 
relations in (19) can be applied.  
 

7. Simulation Results 
 
To demonstrate the effectiveness of a PID controller designed as Hi, H2 and Max while driving the plant, several tests 
are carried out and the results are presented and compared with those of the classical robust controller ROB. The 
simulation results are obtained using MATLAB package and LMI Toolbox.  
 
A. Parameters of the robust controller (ROB): 
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=
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0.9       1.4-      0.35      7.9       1.6-     4-
kC , 0=kD  

Desired H∞-norm: γ=100    
Optimum H∞-norm:    γopt = 7.8603 
Closed-loop eigenvalues: λCL = [-15370, -103±436i, -229, -10, -4.7, -2.2 ±2.7i, -1.3± 2.8i, -0.63, -1]T    
  
B. Parameters of H∞-PID controller (Hi): 

 
The obtained PID gains are: 
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−
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3F  [ ]321 FFFF =  

Riccati starting matrix:   Q0= 10I8x8 
Desired dominant eigenvalue: αopt =  0 
Obtained dominant eigenvalue: αopt =  -0.77 
Closed-loop eigenvalues:  λCL =    [ -998 -6.4 ± 15.8i -6 ± 5.6i       -0.43 -1.87 -4.1 ]T 
 
C. Parameters of H2-PID controller (H2): 
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 0.19    24.0
3F  [ ]321 FFFF =  

 
Initial Riccati matrix:  Q0=10*I8x8 
Closed-loop eigenvalues:  λCL =    [ -225 -4.4 ± 4i        -1.7 ± 1.97i       -1±0.74 -1.16 ]T 
 
D. Parameters of MOC-PID controller: 

 
η=100 
σ=50 
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Initial Riccati matrix:  Q0=I8x8 
Closed-loop eigenvalues:  λCL =    [ -1362 -9.94       -1.1 ±5.9i        -1.1 ± 1.04i       -0.48        -0.81 ]T 
 
Test 1: Step-response 

 
To test the effectiveness of the system equipped with each of the named three LMI-based iterative multivariable PID 
namely; PID design using H∞-norm (Hi),  PID design using H2-norm (H2), PID design with Maximum Output Control 
(Max), and the LMI-based robust output feedback controller using H∞-norm (ROB), an increase (at t=0 s) then a 
decrease  (at t=15 s) by 5% in both Pref and Vref is applied. The time responses of the exciter input voltage Ue, the 
governor valve position Ug, the output active power Pt, and the terminal voltage Vt, are shown, respectively, in Fig. 4. 
Best performance is characterized by lower or no over/undershoots, less or no oscillations, short rise and settling times. 
Based on this, Hi shows the best response whereas ROB shows the worse response with higher overshoots. For Vt 
response, H2 shows the best response whereas Max shows the worse one with longer settling time. 
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(a) Exciter Input Ue 

 
 (b) Governor input Ug 
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(c) Power output Pt 

 
(d) Terminal voltage Vt 

Fig. 4 Step-response following Pref=Vref =5% 
 

Test 2: Tracking-response 
 

To test the effectiveness of the system to tracking the reference control values, the simulation period is divided into 4 
regions where the reference values of the controlled variables increase linearly then steady and finally a linear decrease 
in both reference values Vref and Pref. The time responses of the exciter input voltage (voltage control effort) Ue, the 
governor valve position (governor control effort) Ug, the output active power Pt, and the terminal voltage Vt, are shown, 
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respectively, in Fig. 5. For Pt-response, Hi shows the best response whereas H2 shows the worse with longer settling 
time. For Vt response, Max shows the best response whereas ROB shows the worse one with longer settling time. 

 

 
(a) Exciter Input Ue 

 
 (b) Governor input Ug 
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(c) Power output Pt 

 
(d) Terminal voltage Vt 

 
Fig. 5 System response due to reference tracking (test 2)  

 
Test 3: Parameters Variation 

 
To test the robustness to parameters change, an increase by 50% in the inertia constant H and in the damping torque 
coefficient Td  are applied. Figure  6 shows the system response following a step change by 5% then -5% in Vref and Tref  
with the system experiencing the described parameters change and using the controller gains found for the normal case.  
The time responses of the exciter input voltage (voltage control effort) Ue, the governor valve position (governor control 
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effort) Ug, the output active power Pt, and the terminal voltage Vt, are shown, respectively, in Fig. 6. For Pt-response, Hi 
shows the best response whereas ROB shows the worse one with large over/undershoots. The other two, exhibit 
relatively larger rising and settling times. For Vt response, H2 shows the best response whereas Max shows the worse 
one with longer settling time. 

 

 
(a) Exciter Input Ue 

 

 
 (b) Governor input Ug 
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(c) Power output Pt 

 
(d) Terminal voltage Vt 

 
Fig. 6 System response with parameters change (test 3)  

 
8. Conclusion 

 
Four controllers,  the first, a robust H∞-LMI based output feedback (ROB) and the other three LMI-based iterative 
multivariable PID controllers namely;  PID design with H∞-specifications (Hi), PID design with H2-specifications (H2), 
PID design with maximum output control (Max), were designed for a sample power system comprising a steam turbine 
driving a synchronous generator connected to an infinite bus via a step-up transformer and a transmission line. Several 
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test were applied to allow for a comparison between performances of the concerned controllers. The quality of the 
controller response is selected through its performance that is characterized by lower or no over/undershoots, less or no 
oscillations, short rise and settling times. 

 

From the simulation results, it is clear that in all cases, PID exhibits better performance than the classical robust control 
(ROB). Hi shows the best responses for Pt in all the tests done whereas, for Vt, H2 and Max present the best response for 
all the test done.  ROB has other inconvenient that is its high order that is equal to the plant one thus more complicated 
in its implementation.  

 

As an extension, the performance of the PID via multi-objective and poles placement, the extension to a multimachine 
power system, and the inclusion of the nonlinear features inherent in the system, will be considered in the future. 
Moreover, more tests should be done and divers controller parameters varied to extract all features of the each of the 
cited controllers. 
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Appendix 1: System Parameters 
 

MVA  37.5 
MW  30 
p.f.  0.8 lagging 
kV  11.8 
r/min  3000 
xd  2  pu 
xq  1.86  pu 
xad  1.86  pu 
xfd  2  pu 
Rfd  0.00107 pu 
H  5.3 MWs/MVA 
Td  0.05 s 

 

xt  0.345 pu 
xl  0.125 pu  
e  1 pu 
τe  0.1 s 
τg  0.1 s 
τb  0.5 s  
Kv  1.889 
Ke    0.01 
Vd    0.5586 
Vq    1.1076 
Vt     1.2405 
K1  1.2564 
 

K2   -0.9218 
K3   -0.5609 
K4    0.4224 
K5    0.7983 
K6    0.5905 
K7    0.3650 
K8   -39.559 
K9   -27.427 
K10   -0.2955 
K11    1.268 
K12    0.8791 
K13    0.0287 
K14    0.52726 

 
Appendix 2: Algorithm 1 (Hi) 
 

Step 0: Form the system state space realization: (A, B1, B2 ,Cs ,Cr , D) and select the performance index γ 
Step 1:  Choose Q0 > 0 and solve P for the Riccati equation: 

0O,    P0QPTBPA-PBPTA >=++ 22  

Set i= 1 and X =P 
Step 2:  Solve the following optimization problem for P, F and αi. 

OP1: Minimize αi subject to the following LMI constraints 
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PX- αTBB XX TBP - PBTB PA -XBP TA   2  2    2  2   2  2  1 ++=∑  

Denote by α* the minimized value of α. 
Step 3:  If α*≤0, the matrix pair (P,F) solves the problem. Stop. Otherwise go to Step 4. 
Step 4:  Solve the following optimization problem for P and F. 

OP2: Minimize trace(P) subject to LMI constraints (A1) with α=α*. Denote by P* the optimal P. 
Step 5:  If ε<− |||| *BPXB . where ε is a prescribed tolerance, go to Step 6;  

Otherwise set i= i + 1, X=P*, go to Step 2. 
Step 6:  It cannot be decided by this algorithm whether the problem is solvable. Stop. 

 
 
Appendix 3: Algorithm 2 (H2) 
 

Step 0: Form the system state space realization: (A, B1, B2 ,Cs ,Cr) and select the performance index γ  
Step 1:  Choose Q0 > 0 and solve P for the Riccati equation: 

0O,    P0QPSCT
S-PCTPAAP >=++  

Set i= 1 and X =P 
Step 2:  Solve the following optimization problem for Pi, F and αi. 

OP1: Minimize α subject to the following LMI constraints 
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Denote by α* the minimized value of α. 
Step 3:  If α*≤0, the matrix pair (P,F) solves the problem. Stop. Otherwise go to Step 4. 
Step 4:  Solve the following optimization problem for P and F. 

OP2:  Minimize trace(P) subject to LMI constraints (A2) with α = α*. Denote by P* the optimal P. 
Step 5:  If ||XB-P*B||<ε. where ε is a prescribed tolerance, go to Step 6;  

otherwise set i= i+1, X=P*, and go to Step 2. 
Step 6:  It cannot be decided by this algorithm whether the problem is solvable. Stop. 

 
Appendix 4: Algorithm 3 (Max) 
 

Step 0: Let the system state space realization (A, B1, B2 ,Cs ,Cr,D), a performance index σ, and a given 
number η>0 be given 

Step 1:  Choose Q0 > 0 and solve P for the Riccati equation: 0O,    PQPBPA-PBPA 0
TT >=++ 22  

Set i= 1 and X =P 
Step 2:  Solve the following optimization problem for P, F and α. 

OP1: Minimize α subject to the following LMI constraints 
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Denote by α* the minimized value of α. 
Step 3:  If α*≤0, the matrix F solves the problem. Stop. Otherwise go to Step 4. 
Step 4:  Solve the following optimization problem for P, F. 

OP2: Minimize trace(P) subject to LMI constraints (A3) with α = α*. Denote by P* the optimal P. 
Step 5:  If ||XB-P*B||<ε. where ε is a prescribed tolerance, go to Step 6; otherwise set i= i+1, X=P*,  
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and go to Step 2. 
Step 6:  It cannot be decided by this algorithm whether the SOFMOC problem is solvable. Stop. 
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متعدد المتغيرات باستخدام تقنية تباين المصفوفات  (PID)تفاضلي -تكاملي- تصميم بالتكرار لمتحكم تناسبي
  Hi/H2/MOCوالمقادير  (LMI)الخطية 

  للتحكم في السرعة والجھد لنظام قوى كربائية نموذجي
  

  أحمد الخير بن سنوسي/ د
  

  (SIEEE)عضو سامي بجمعية المھندسين الكھربائيين والإلكترونيين العالمية 
  bensenouci@ieee.org:  البريد الإلكتروني

لية الھندسة، جامعة القصيمقسم الھندسة الكھربائية، ك  
المملكة العربية السعودية –القصيم   

  
تفاضلي  -تكاملي- يقدم البحث خطوات التصميم االتكراري ودراسة مقارنة بين ثلاثة محكمات من النوع تناسبي .ملخص البحث

(PID)  متعددة المتغيرات باستخدام تباين المصفوفات الخطية(LMI) : متحكمPID ارباستخدام المقدH∞-norm  والملقبHi 

والملقب  (MOC)باستخدام أعظم قدرة خرج  PIDلدالة التحويل ومتحكم  H2والملقب  H2-normباستخدام المقدار  PIDومتحكم 

Maxومتحكم تقليدي باستخدام المقدار ،H∞-norm  لحلقة تغذية خلفية للخرج والملقبROB . المتحكمPID  المتعدد المتغيرات

) order(كذلك مرغوب بالنسبة للأنظمة ذات الأحجام . دامه الواسع في الصناعة وبساطة في التركيب والتطبيقمستخدم ھنا لاستخ

  ∞Hالكبيرة والتي لا يمكن تخفيض حجمھا حيث أنھا تحتاج الى متحكم ذو حجم كبير مثل المتحكم التقليدي المتين المسخدم لمقدار 

 (LMI)لقد تم اختيار تقنية تباين المصفوفات الخطية . والذي يتميز بحجم يساوي حجم النظام المتحكم فيه لحلقة تغذية خلفية للخرج

مھمة كل . لأنھا تسمح بادماج سھل لمختلف متطلبات النظام المفروض تحقيقھا من طرف المتحكم مما يجعل تصميمه بكفاءة عالية

المولد يحتوي على . الموصل بشبكة كھربائية واسعة عبر محول وخط نقلمن المتحكمات المذكورة ھي قيادة المولد الوحيد و

مداخل المتحكم ممثلة في الخطأ في . ، مدمجة في كتلة واحدة)المجال أو التحريض(القدرة والثانية للجھد /حلقتين، الأولى للسرعة

لاختبار فاعلية . لبخار، تمثلان مخارجهجھد الطرفي وقدرة الخرج نسبة للقيمھما المرجعية، أما جھد التحريض وموقع صمام ا

تم تطبيق . (Hi, H2, Max, ROB)المتحكمات المقترحة تم القيام لقد تم القيام بدراسة مقارنة باستخدام المتحكمات المذكورة 

لقد . ترات النظاماختبارات مختلفة الممثلة في التغيير في الخطوة والتتبع لقيم مراجع المتغيرات المتحكم فيھا وتغيير في بعض برام

  .تم الحصول على نتائج مشجعة والتي بدورھا تحفز على التغمق أكثر في الموضوع
 

 
 


