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ABSTRACT. A computer simulation model may be regarded as a 
mapping function bietween a set of input and output variables. 
Although simulation models are very popular experimentation 
tools, in many cases they are computationally expensive. Hence, it 
would be essential to have fast, accurate approximation of 
computer simulation. This paper examines the use of an 
evolutionary artificial neural network for approximating a lot size 
– reorder point inventory system simulation. The proposed 
approach was compared with a Backpropagation trained neural 
network and multiple linear regression models. 
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1. Introduction 
 
Simulation based analysis tools are finding increased use to explore different 
design alternatives. Inputs to the simulation model are the decision variables of 
the system, while the outputs are the outcomes of the system. One of the 
shortcomings of discrete event simulation is the amount of computational 
resources required to fully explore system responses [1, 2]. This is true 
especially in situations where the decision making is fast and there is no time to 
perform multiple replications for the selected values of the decision variables. 
To overcome limitations of discrete event simulation models, researchers and 
practitioners have developed metamodels, which are approximations to the 
simulation model and more computationally efficient [3, 4]. The objective of 
the metamodel is to accurately reproduce the simulation over wide ranges of 
decision variables and reduce computation time. The metamodel can be used as 
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a real time decision support to determine the best alternative to solve the 
problem. 
  
      This paper discusses the use of an evolutionary neural network as a 
metamodeling technique for discrete event, stochastic simulation. An (s, S) 
inventory system from the literature is represented by a metamodel using an 
evolutionary neural network to estimate the expected total cost. The 
performance of the proposed metamodeling approach was compared to that of 
existing approaches that included a neural network trained with 
Backpropagation algorithm and regression models. It is shown that the 
evolutionary neural network metamodel is quite competitive in accuracy when 
compared to the simulation itself and outperforms other methods, but it requires 
more training time.  

 
 

2. Simulation Metamodels 
 
      A simulation metamodel is an approximation model, which provides a 
model of the simulation model [5]. To define a stochastic simulation metamodel 
[6, 7], let Xj, j=1,2, . . ., n denote the variables influencing the response, Y, of the 
physical system. The unknown relationship between Y and Xj may be written as: 

 
 γ+= ).,..,( 1 nXXfY  (1)

 
where γ  is a random noise, with zero mean and is independent from the inputs 
Xj. The predictor of Y is given by: 

 
 ).,..,().,..,|(ˆ

11 nn XXfXXYEY ==  (2)
 

      A simulation model usually includes a set of the input variables as follows: 
 

 δ+= ).,..,(' 1 pXXgY  (3)
 

where np ≤  and δ is random noise with zero mean and is independent of the 
inputs Xj, and represents the random fluctuation of the simulation model. The 
predictor for the simulation model is given by: 

 
 ).,..,('ˆ

1 pXXgY =  (4)
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The amount sYY ε=− ˆ'ˆ  denotes the error term accounting for the simulation 
error, resulting from the excluded variables and model specification. 
 

A metamodel, h, is a further simplification of the simulation and it can be 
written as: 
 
 τ+= ).,..,('' 1 mXXhY  (5)

 
where npm ≤≤  and τ is a random error. Since the metamodel is adjusted from 

the simulation model, mYY ε=− '''ˆ  is an additional error accounting for the 
metamodeling error resulting from the further excluded variables and the 
metamodeling error of fitting the metamodel to the simulation model. 
 

The specification of the metamodel is the identification of the parameters 
of )(⋅h . The metamodel can be viewed as a simplified model of the simulation 
model acting as a surrogate for the study of the physical system. The 
metamodeling error is therefore the sum of the three error terms, 

γεε ++=− smYY '' . 
 
      There are several techniques that have been proposed as metamodeling 
tools. Parametric regression models are widely used as surrogate models in 
simulation [8, 9]. While easy to implement, the performance of a regression 
metamodel depends on the applicability of the regression functional form to the 
simulation response. In addition, regression models assume that the errors are 
identical and normally distributed and violation of these assumptions impacts 
the reliability of the model. 
  
      Artificial neural networks (ANNs) have received an increasing attention as 
metamodeling tools. They offer universal function approximation capability that 
can mimic any functional relationship with a high degree of precision [10]. For 
development of a metamodel, the ability to accurately model any functional 
relationship is critical because it removes the possibility of specifying an 
incorrect functional form. This means the component εm which comes from the 
metamodeling error would be close to zero that is no error would be incurred in 
fitting the metamodel since a neural network can exactly mimic any simulation 
relationship [7]. 
 

3. Models Description 
 

      The inventory examined in  this paper has been described in Law and 
Kelton [11]. This system is an (s, S) inventory system where s = reorder point 
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and S = order quantity and d=S-s is the reorder quantity. A stationary (s, S) 
policy is used to decide how much to order at the beginning of each time period. 
Given that I is the inventory at the beginning of each period, then the amount to 
order for that time period Z is determined by: 
 
 





≥
<−

=
sIif
sIifIS

Z
0

 (6)

 
      Law and Kelton [11] held all input parameters fixed except for s and d and 
used the annual cost, tc, to build a response surface for the inventory system. 
The total cost includes holding cost, order cost and shortage cost. This paper 
used the same inputs and output to develop the proposed metamodel. The 
following are the parameters of the system as described in Law and Kelton [11]: 
 









=

1/6yprobabilitwith4
2/6yprobabilitwith3
2/6yprobabilitwith2
1/6yprobabilitwith1

(Demand)D  

td (time between demands) exp(1/λ=0.1 month) 
I = inventory level (I0 =60) 
s = reorder point 

d = reorder quantity  
t0 = time between order decisions = 1 month 
tL = time lag for delivery (U[0.5 to 1] month) 
k = setup cost 
i = incremental cost per item ordered = 3.0 
h = holding cost per item= 1.0 / month 
u = underage cost = 5.0 / month 
n = time horizon = 120 month 

 
      This system has been previously investigated. Klimer and Smith [12] and 
Kilmer et al. [13] used artificial neural networks trained with Backpropagation 
algorithm to construct empirical metamodels of computer simulations. In these 
two studies, basic simulation tasks, such as prediction and comparison of 
alternatives, were performed with neural approximations of a computer 
simulation.  
  
      In this study, data was obtained from computer simulation in order to build 
a fast empirical model of the system. The inventory system simulation was 
written in the C language and verified against the Kilmer and Smith [12] 
simulation, which held all input parameters fixed except for reorder point s and 
reorder quantity d. The data used to develop the approximation models consist 
of 420 data points constructed with all possible combinations of 21 equally 
spaced values of s between 0 and 100 (i.e., 0, 5, 10, . . . , 100) and 20 equally 
spaced values of d between 5 and 100 (i.e., 5, 10, 15, . . ., 100). Simulation was 
run for each combination of s and d to obtain the corresponding total cost, tc, in 
a similar fashion as was done by Kilmer and Smith [12]. Each simulation run 
resulted in one value of the response variable, total cost, and this response 
depends on the values of the input variables, reorder point, s, and reorder 
quantity, d. 
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4. Evolutionary Neural Networks 

 
      Evolutionary artificial neural networks [14, 15], include genetic algorithm 
(GA) or other evolutionary algorithms in their operations, which are used to 
perform various tasks such as weight training, architecture design, input 
selection and initial weights selection. The combination of neural networks and 
evolutionary computation has been intensively investigated in the past years. 
The main goal of these studies is to determine the topology and training of a 
neural network by an evolutionary algorithm that represents a neural network 
structure and weights as individual genes. To name a few of these works: [16], 
[17], [18] and [19].  
 
      Weight training in ANNs is usually formulated as minimization of an error 
function between target outputs and actual outputs and iteratively adjusting the 
weights. Deterministic training algorithms like Backpropagation (BP) [20] and 
Conjugate Gradient Backpropagation [21] are widely used in ANN training. 
These algorithms are based on gradient descent search. They often get trapped 
in a local minima of the error function and they are inefficient in finding a 
global minima.   
 
      The use of stochastic algorithms is another alternative for ANN training 
[22], and they are less sensitive to local minima. Nevertheless, they are 
generally slow compared to the fastest versions of gradient based algorithms, 
since they perform global searches and implement probabilistic search operators 
[23]. These algorithms include the use of Genetic Algorithm (GA) [24], and 
evolutionary algorithms in ANN training. The points in the search space to be 
examined are selected on the basis of probabilistic criteria. Therefore, stochastic 
algorithms are less vulnerable to the local minima problem. 
 
      It is more advantageous to apply a hybrid training algorithm, which 
combines the advantages of both deterministic and stochastic approaches. The 
stochastic algorithm is used to define the initial weights of the neural network 
while the deterministic algorithm is used to perform local search. Examples of 
these hybrid training algorithms include the combination of GA and BP 
algorithms [25, 26] and the combination of simulated annealing and Conjugate 
Gradient [27]. 
 
      The proposed evolutionary neural network was trained using differential 
evolution algorithm [28, 29]. The evolutionary algorithm is used to derive the 
connection weights and biases of the neural network, which are represented as 
individuals in the population of the algorithm. Each differential evolution 
chromosome stores a weight configuration that is improved from one generation 
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to another. One important feature of evolutionary algorithm is its population 
based search strategy, where individuals in a population compete and exchange 
information with each other to improve the solution of the problem.  
 

5. Differential Evolution Algorithm 
 
      Differential Evolution (DE) [28] is an improved version of GA for faster 
optimization. Unlike simple GA that uses binary coding for representing 
problem parameters, DE uses real coding representation. DE has several 
advantages that include its simple structure and speed. Price and Storn [28] gave 
the main principles of DE with single strategy, then, they suggested ten 
different strategies of DE [29]. The selection of the strategy and key parameter 
values are critical to the performance of DE. These control parameters are: 
population size (NP), crossover constant (CR) and the scaling factor (F). 
 
      There are several variants of DE. The following briefly describes the 
DE/rand/1/bin scheme. More detail descriptions are given in [28-31]. DE 
operates on a population, PG, of candidate solutions, not just a single solution. It 
maintains a population of constant size that consists of NP real valued vectors 
Xi,G, where i indexes the population and G is the generation to which the 
population belongs.  
 
 max,,1 ,...,0),...,( GGXXP GNPGG ==  (7)

 
Each  vector Xi,G contains D real parameters (chromosomes): 
 
 max,,,,1, ,...,0;,...,1),...,( GGNPixxX GiDGiGi ===  (8)

 
The values of the initial population, PG=0 , are initialized with random values  
 
 DjNPirandx jij ,...,1;,...,1]1,0[0,, ===  (9)

 
where randj[0,1] denotes a uniformly distributed random value within the range 
[0.0,1.0] that is chosen for each j. 
 
      Vectors in the current population, PG, are randomly combined to create 
candidate vectors for the next generation PG+1. The population of candidates, or 
trial vectors Ui, G+1 is generated as follows: 
 
 



 =∨≤−+
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where, 
 
i=1, . . ., NP;   j=1, . . ., D 
 

ieachforoncechosenindexparameterrandomDk };,...,1{∈  
 

irrrNPrrr ≠≠≠∈ 321321 withselectedrandomly};,...,1{,,  
 

]1,0(],1,0[ +∈∈ FCR  
 
      The randomly chosen indexes, r1, r2 and r3 are different from each other and 
also different from the running index, i. New random integer values r1, r2 and r3 
are chosen for each individual i. The index, k, refers to a randomly selected 
chromosome which is used to ensure that each individual trial vector, Ui,G+1, 
differs from its counterpart in the previous generation, Xi,G, by at least one 
parameter. A new random integer value is assigned to k prior to the construction 
of each trial vector i.  
 
      F, NP and CR are DE control parameters and they remain constant during 
the search process. F is a real-valued factor in the range [0.0,1+] that scales the 
differential variations. NP is the size of the population. CR is the crossover 
factor in the range [0,1] that controls the probability that a trial vector parameter 
uj,i,G+1 will come from a randomly chosen, mutated vector 

).( ,2,,1,,3, GrjGrjGrj xxFx −+  instead of from the current vector, Xj,i,G. Usually 
suitable values for NP, F and CR are obtained by trial-and-error using different 
values of these parameters. 
 
      The population for the next generation, PG+1, is selected from the current 
population and the trial population UG+1 according to the following rule: 
 
 



 ≤

= ++
+ otherwise
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,

,1,1,
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Gi X

XfUfifU
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where )(⋅f  is the fitness (cost) function of the optimization process. Hence, 
each individual of the current population is compared with its counterpart in the 
trial population. Assuming that the objective function is to be minimized, the 
vector with the lowest objective function value wins a place in the next 
generation population. Therefore, all individuals in the next generation are as 
good or better than their counterparts in the current population. 
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6. Results 
 
      Two regression models were estimated using the 420 simulation data points. 
The first is first order regression model and the second is second order 
regression model, which are typically used in simulation metamodeling.  
 
      Three ANN models were constructed using the same data: i) an artificial 
neural trained with the Conjugate Backpropagation training algorithm, ii) an 
evolutionary neural network trained with differential evolution, and iii) an 
evolutionary neural network trained with hybrid training algorithm that 
combines Conjugate BP and differential evolution algorithm. The DE algorithm 
for ANN training was implemented using MATLAB scripts [29], whereas the 
Conjugate BP was implemented using the Neural Networks Toolbox from 
MATLAB®. All the ANN models had two inputs nodes, one corresponding to s 
and the other corresponding to d and one output node corresponding to tc. In 
addition, each network has one hidden layer with eight nodes, which were 
selected after several experiments with a different number of nodes.  
 
      The differential evolution algorithm requires the specification of several 
parameters that include the size of the population (NP), crossover factor (CR) 
and the scaling factor (F). In neural network training, the size of the population 
is the number of the connection weights and biases. In a neural network with 
two input nodes, eight hidden nodes and one output node, there are 31 
connection weights and biases representing members of the population that will 
go through the crossover and mutation operations during the training process. 
The values of CR and F are selected by trial-and-error and after several 
experiments, it appeared that CR=0.5 and F=0.8 are appropriate values. 

 
          Each neural network was trained for a total of 5000 epochs. This number 
of epochs was found to be the number at which there was no improvement in 
the performance of any of the three neural networks. Training was evaluated 
using the regularized performance function [32], which takes the following 
form: 

 
 

k
ww

n
eeE

TT

reg α+=  (12)

 
where n

eeT  is the mean square error, k
wwT  is the mean square of the network 

weights and biases and α  is a regularization factor. The size of the training data 
is n and the number of connection weights and biases is k. Using the regularized 
performance function can improve the generalization ability of the neural 
network [32]. Training was performed using a PC Pentium IV 2000 MHz with 
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256MB RAM. Table (1) shows some of the training statistics for the three 
training algorithms. Initial Ereg is the value of the regularized performance 
function at the beginning of training (epoch=0) using the initial connection 
weights and minimum Ereg is the value of the regularized performance function 
at the end of training (epoch=5000), which represents the minimum value of 
Ereg that can be achieved by the training algorithm. 

 
   Table 1: Training statistics. 
 

Training algorithm Initial Ereg Minimum Ereg Training time (minutes) 

conjugate Backpropagation 23344.5 146.86 1.05 

differential evolution 22603.8 88.95 19.13 

hybrid training 88.95 53.23 21.46 
 
 

      The hybrid training algorithm achieved the lowest Ereg value followed by the 
differential evolution algorithm then the conjugate Backpropagation. The 
conjugate Backpropagation algorithm took only 1.05 minute to run the specified 
5000 epochs whereas the evolutionary algorithm took 19.13 minutes and the 
hybrid algorithm took 21.46 minutes. Training a neural network using the 
evolutionary algorithm requires more time compared to the conjugate 
Backpropagation. In the evolutionary algorithm, the population consists of the 
network connection weights and biases. During the training process, these 
weights are updated using crossover and mutation to derive a better set of 
weights, which takes more time compared to the Backpropagation algorithm 
where weights are updated using a direct gradient descent procedure. 

 
      The evolutionary ANN with differential evolution training algorithm was 
retrained with a training goal set to Ereg value equals to 146.86, which is the 
lowest Ereg value achieved by the conjugate Backpropagation in 5000 epochs. 
The evolutionary ANN converged to the desired error value after 804 epochs. 
This is a clear indication that although the evolutionary ANN requires more 
training time, it is less susceptible to fall into a local minima compared with a 
feed-forward ANN with backpropagation training algorithm. 
 
  Table 2: Regression models results.                            
 

Model Regression equation R2 MAE 

First order tc= 116.6+0.59s+0.096d 0.55 10.93 
Second order tc=170.5-1.09s-1.01d+0.008sd+0.012s2+0.007d2 0.85 6.51 
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  Table 3: ANNs results.                             
 

Model Training algorithm R2 MAE 

Feed-forward ANN conjugate Backpropagation  0.75 6.64 

Evolutionary ANN differential evolution 0.88 6.49 

Evolutionary ANN hybrid training  0.94 4.53 

 
      Two evaluation criteria were used to evaluate the proposed approaches for 
simulation metamodeling: the determinant coefficient (R2) and mean absolute 
error (MAE) . The values of these criteria for the statistical models are shown in 
Table 2 whereas Table 3 shows these values for the neural networks. The results 
of the study show that: i) the evolutionary neural network outperforms the 
statistical models and the feed-forward neural network trained with 
Backpropagation algorithm, ii) the evolutionary neural network takes more time 
in training, however, it requires fewer number of epochs to reach the same 
performance as the feed-forward neural network, iii) the evolutionary neural 
network is less susceptible to fall into local minima compared to the feed-
forward neural network, and iv) the neural network trained with hybrid training 
algorithm outperforms all other models. The combination of evolutionary 
algorithm and Backpropagation is more efficient than using evolutionary 
training alone. In this case, the weights and biases derived by evolutionary 
algorithm training are used as initial values for the Backpropagation algorithm. 
 
      The response surfaces given in Figure 1 permit a visual comparison of the 
models considered in the study. Figure 1a plots the response surface of the 420 
simulation data points. Figures 1b through 1f plot the response surfaces of first 
order regression, second order regression, a neural network with BP training, an 
evolutionary ANN with DE training and an evolutionary ANN with hybrid 
training respectively that were constructed using the 420 data points. The best 
one from the ANN or the regression would be a response surface close to 1a. 
These plots show that the response surface of the evolutionary ANN with 
hybrid training (1f) is closer than other models to approximating the computer 
simulation. The second closest is the response surface of the evolutionary ANN 
trained with DE. 
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Fig. 1c. Second order regression. Fig. 1d. ANN with BP training. 

Fig. 1a: Direct simulation 420 points. Fig. 1b: First order regression. 

Fig. 1e. ANN with DE training. Fig. 1f. ANN with hybrid training. 
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7. Conclusion 
 
      Decision making using simulation models can be time consuming because 
of the computational efforts of running the simulation many times before a 
decision can be made. This has motivated the field of simulation metamodeling, 
intended to build approximations of simulation models. There are fundamental 
reasons for using a neural network approach to simulation metamodeling, which 
include universal approximation ability.  

 
      This paper proposed a new model for simulation metamodeling and 
compared its performance to available models. The results of the study 
demonstrated the capabilities of evolutionary ANNs in building simulation 
metamodels. The evolutionary algorithm can be used by itself to train the 
evolutionary neural network or in combination with the Backpropagation 
algorithm. In either case, it will perform better than statistical models or a 
neural network trained with Backpropagation.  
 
 

References 
 
[1] Barton, R. R., Simulation Metamodels, Proceedings of the 30th Conference on Winter 

Simulation, Washington, DC., 167-176 (1998).  
[2] Barton, R. R., Metamodels for Simulation Input-Output Relations, Proceedings of the 

1992 Winter Simulation Conference, J. J. Swain, D. Goldsman, R. C. Crain and J. R. 
Wilson (eds), 289-299 (1992).   

[3] Giunta, A. A. and Watson, L. T., A Comparison of Approximation Modeling Techniques: 
Polynomial Versus Interpolating Models, Proceedings of the 7th AIAA/USAF/NASA/ISSMO 
Symposium on Multidisciplinary Analysis and Design, St. Louis, MO, 392-404 (1998).     

[4] Jin, R., Chen, W. and Simpson, T. W., Comparative Studies of Metamodeling Techniques 
under Multiple Modeling Criteria, Journal of Structural and Multidisciplinary 
Optimization, 23, 1, 1-13 (2001).       

[5] Kleijnen, J. P. C., Statistical Tools for Simulation Practitioners, Marcel Dekker, New 
York (1987).      

[6] Aussem A., Hill D., Wedding Connectionist and Algorithmic Modeling: Towards 
Forecasting Caulerpa Taxifolia Development in North-Western Mediterranean Sea, 
Ecological Modeling, 120, 225-236 (1999).      

[7] Kilmer, Robert A. Smith, Alice, and Shuman, Larry J., Computing Confidence Intervals 
for Stochastic Simulation Using Neural Networks Metamodels,  Computers and Industrial 
Engineering, 36, 391-407 (1999).                     

[8] Myers, R. H. and Montgomery, D. C., Response Surface Methodology: Process and 
Product Optimization Using Designed Experiments. Wiley and Sons, New York (1995).      

[9] Venter, G. Haftka, R. T. and Starnes, J. H. Jr.,  Construction of Response Surfaces for 
Design Optimization Applications, 6th AIAA/USAF/NASA/ISSMO Symposium on 
Multidisciplinary Analysis and Optimization, Bellevue, WA, AIAA, 1, 548-564  (1996).       

[10] Hornik, K, Stinchcombe, M, and White, H., Multilayer Feedforward Networks are 
Universal Approximators,  Neural Networks, 2, 359-366 (1989).    

[11] Law, A. and Kelton, D., Simulation Modeling and Analysis. McGraw Hill, New York 
(1991). 



Approximation of a Discrete Event …. 
 

137

[12] Kilmer, Robert A. and Smith, Alice, Using Artificial Neural Networks to Approximate a 
Discrete Event Stochastic Simulation Model, Intelligent Engineering Systems Through
 Artificial Neural Networks, 3, 631-636 (1993).  

[13] Kilmer, R. A., Smith, A. E. and Shunman, L. J., Using Neural Network Metamodels to 
Develop Prediction Intervals for Discrete Event Simulation, Intelligent Engineering 
Systems Through Artificial Neural Networks, 4, 1141-1146 (1994).  

[14] Yao, X., A Review of Evolutionary Artificial Neural Networks, International Journal of 
Intelligent Systems, 8, 4, 539-567 (1993).  

[15] Yao, X., Evolutionary Artificial Neural Networks, International Journal of Neural Systems, 
4, 3, 203-222 (1993).    

[16] Whitley, D. , Starkweather, T. and Bogart, C., Genetic Algorithms and Neural Networks: 
Optimizing Connections and Connectivity,  Parallel Computing, 14, 347-361 (1990).  

[17] Yao,  X. and Liu, Y., Towards Designing Artificial Neural Networks by Evolution, 
Applied Mathematics and Computation, 91, 1, 83-90 (1998).    

[18] Fogel, D. B.,  Fogel, L. J. and Porto, V. W., Evolving Neural Networks, Biological 
Cybernetics, 63, 487-493 (1990).    

[19] Yao, X and Liu., Y., Evolutionary Artificial Neural Networks that Learn and Generalise 
Well, Proceedings of the 1996 IEEE International Conference on Neural Networks, 
Washington DC, 159-164 (1996).   

[20] Rumelhart, D. E., Hinton, G. E. and Williams, R. J., Learning Internal Representations
by Error Propagation, In Parallel Distributed Processing, Rumelhart, D. E. and 
Mcclelland, J. L. (Eds), 1, MIT Press, Cambridge, 318-362 (1986).    

[21] Moller, M. F., A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning, 
Neural Networks, 6, 525-533 (1993).   

[22] Yao, X. and Liu. Y., A New Evolutionary System for Evolving Artificial Neural Networks, 
IEEE Transactions on Neural Networks, 8, 3, 694-713 (1997).     

[23] Yao, X., Evolutionary artificial neural Networks, Encyclopedia of Computer Science and 
Technology, 33, 137-170 (1995).     

[24] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts (1989).    

[25] Belew, R. K., McInerny, J. and Schraudolph, N. N., Evolving Networks: Using the 
Genetic Algorithm With Connectionist Learning, Proceedings of the Second Conference on 
Artificial Life,  Langton, C.G.; Taylor, C. ; Farmer, J. D. and Rasmussen, S. (Eds), 511-
548, (1991).    

[26] Kinnebrock, W., Accelerating the Standard Backpropagation Method Using a Genetic 
Approach, Neurocomputing, 6, 583-588 (1994).     

[27] Masters, T., Advanced Algorithms for Neural Networks: a C++ Sourcebook, John Wiley 
& Sons, New York (1995).     

[28] Price, K. and Storn, R., Differential Evolution – A Simple Evolution Strategy for Fast 
Optimization, Dr. Dobb’s Journal, 22, 4, 18-24, and 78 (1997).    

[29] Price, K. and Storn, R.,  Web Site of DE, March 2003. URL: 
http://www.ICSI.Berkeley.edu/~Storn/code.html          

[30] Storn, R., System Design by Constraint Adaptation and Differential Evolution, IEEE 
Trans. on Evolutionary Computation,  3, 1, 22-34 (1999).    

[31] Storn, R. and Price, K., Differential Evolution - a Simple and Efficient Heuristic for 
Global Optimization over Continuous Spaces, Journal of Global Optimization, 11, 341-359 
(1997). 

[32] Chen, D and Hagan, M.T., Optimal Use of Regularization and Cross-Validation in Neural 
Network Modeling, Available via URL: 
http://hagan.ecen.ceat.okstate.edu/chen_hag_nn99.pdf  

 
 



Hindi A. Al-Hindi 138 

 

  تقريب محاكاة الأحداث العشوائية الوثابة باستخدام شبكة 
  عصبية اصطناعية تطورية

  
  هندي بن عبداالله الهندي

   جامعة الملك سعود–كلية الاقتصاد والإدارة 
    المملكة العربية السعودية–فرع القصيم 

  
تهدف المحاكاة باستخدام الحاسب الآلي إلى إيجاد : المستخلص

وعلى الرغم .  من المدخلات والمخرجاتالعلاقة بين مجموعة
من شيوع نماذج المحاكاة كأدوات تجريبية إلا أنها في كثير من 
الحالات تتطلب وقتًا طويلاً للحصول على النتائج المطلوبة لذلك 

ويهدف هذا . من الضروري استخدام تقريب لنماذج المحاكاة
 البحث إلى استخدام شبكة عصبية اصطناعية تطورية لتقريب

الشبكة العصبية الاصطناعية . محاكاة نموذج مخزون عشوائي
التطورية المقترحة لتقريب المحاكاة تم مقارنتها مع شبكة 
عصبية اصطناعية تقليدية تم تدريبها باستخدام أسلوب الاتجاه 

كما تم مقارنة الشبكة العصبية المقترحة مع نماذج . للخلف
  . االانحدار الخطية وذلك للتأكد من كفاءته

 
  


