
JKAU: Eng. Sci., vol. 15 no. 1, pp. 125-138 (1425 A.H./ 2004 A.D.)

125

Approximation of a Discrete Event Stochastic Simulation

Using an Evolutionary Artificial Neural Network

HINDI A. AL-HINDI

Associate Professor of IS, College of Business and Economics,
King Saud University, Al-Qasseem Branch, Saudi Arabia

E-mail: hahindi@ksu.edu.sa

ABSTRACT. A computer simulation model may be regarded as a
mapping function bietween a set of input and output variables.
Although simulation models are very popular experimentation
tools, in many cases they are computationally expensive. Hence, it
would be essential to have fast, accurate approximation of
computer simulation. This paper examines the use of an
evolutionary artificial neural network for approximating a lot size
– reorder point inventory system simulation. The proposed
approach was compared with a Backpropagation trained neural
network and multiple linear regression models.

KEYWORDS: Simulation metamodels, Evolutionary ANN

1. Introduction

Simulation based analysis tools are finding increased use to explore different
design alternatives. Inputs to the simulation model are the decision variables of
the system, while the outputs are the outcomes of the system. One of the
shortcomings of discrete event simulation is the amount of computational
resources required to fully explore system responses [1, 2]. This is true
especially in situations where the decision making is fast and there is no time to
perform multiple replications for the selected values of the decision variables.
To overcome limitations of discrete event simulation models, researchers and
practitioners have developed metamodels, which are approximations to the
simulation model and more computationally efficient [3, 4]. The objective of
the metamodel is to accurately reproduce the simulation over wide ranges of
decision variables and reduce computation time. The metamodel can be used as

Hindi A. Al-Hindi 126

a real time decision support to determine the best alternative to solve the
problem.

 This paper discusses the use of an evolutionary neural network as a
metamodeling technique for discrete event, stochastic simulation. An (s, S)
inventory system from the literature is represented by a metamodel using an
evolutionary neural network to estimate the expected total cost. The
performance of the proposed metamodeling approach was compared to that of
existing approaches that included a neural network trained with
Backpropagation algorithm and regression models. It is shown that the
evolutionary neural network metamodel is quite competitive in accuracy when
compared to the simulation itself and outperforms other methods, but it requires
more training time.

2. Simulation Metamodels

 A simulation metamodel is an approximation model, which provides a
model of the simulation model [5]. To define a stochastic simulation metamodel
[6, 7], let Xj, j=1,2, . . ., n denote the variables influencing the response, Y, of the
physical system. The unknown relationship between Y and Xj may be written as:

 γ+=).,..,(1 nXXfY (1)

where γ is a random noise, with zero mean and is independent from the inputs
Xj. The predictor of Y is given by:

).,..,().,..,|(ˆ

11 nn XXfXXYEY == (2)

 A simulation model usually includes a set of the input variables as follows:

 δ+=).,..,(' 1 pXXgY (3)

where np ≤ and δ is random noise with zero mean and is independent of the
inputs Xj, and represents the random fluctuation of the simulation model. The
predictor for the simulation model is given by:

).,..,('ˆ

1 pXXgY = (4)

Approximation of a Discrete Event ….

127

The amount sYY ε=− ˆ'ˆ denotes the error term accounting for the simulation
error, resulting from the excluded variables and model specification.

A metamodel, h, is a further simplification of the simulation and it can be
written as:

 τ+=).,..,('' 1 mXXhY (5)

where npm ≤≤ and τ is a random error. Since the metamodel is adjusted from

the simulation model, mYY ε=− '''ˆ is an additional error accounting for the
metamodeling error resulting from the further excluded variables and the
metamodeling error of fitting the metamodel to the simulation model.

The specification of the metamodel is the identification of the parameters
of)(⋅h . The metamodel can be viewed as a simplified model of the simulation
model acting as a surrogate for the study of the physical system. The
metamodeling error is therefore the sum of the three error terms,

γεε ++=− smYY '' .

 There are several techniques that have been proposed as metamodeling
tools. Parametric regression models are widely used as surrogate models in
simulation [8, 9]. While easy to implement, the performance of a regression
metamodel depends on the applicability of the regression functional form to the
simulation response. In addition, regression models assume that the errors are
identical and normally distributed and violation of these assumptions impacts
the reliability of the model.

 Artificial neural networks (ANNs) have received an increasing attention as
metamodeling tools. They offer universal function approximation capability that
can mimic any functional relationship with a high degree of precision [10]. For
development of a metamodel, the ability to accurately model any functional
relationship is critical because it removes the possibility of specifying an
incorrect functional form. This means the component εm which comes from the
metamodeling error would be close to zero that is no error would be incurred in
fitting the metamodel since a neural network can exactly mimic any simulation
relationship [7].

3. Models Description

 The inventory examined in this paper has been described in Law and
Kelton [11]. This system is an (s, S) inventory system where s = reorder point

Hindi A. Al-Hindi 128

and S = order quantity and d=S-s is the reorder quantity. A stationary (s, S)
policy is used to decide how much to order at the beginning of each time period.
Given that I is the inventory at the beginning of each period, then the amount to
order for that time period Z is determined by:

≥
<−

=
sIif
sIifIS

Z
0

 (6)

 Law and Kelton [11] held all input parameters fixed except for s and d and
used the annual cost, tc, to build a response surface for the inventory system.
The total cost includes holding cost, order cost and shortage cost. This paper
used the same inputs and output to develop the proposed metamodel. The
following are the parameters of the system as described in Law and Kelton [11]:

=

1/6yprobabilitwith4
2/6yprobabilitwith3
2/6yprobabilitwith2
1/6yprobabilitwith1

(Demand)D

td (time between demands) exp(1/λ=0.1 month)
I = inventory level (I0 =60)
s = reorder point

d = reorder quantity
t0 = time between order decisions = 1 month
tL = time lag for delivery (U[0.5 to 1] month)
k = setup cost
i = incremental cost per item ordered = 3.0
h = holding cost per item= 1.0 / month
u = underage cost = 5.0 / month
n = time horizon = 120 month

 This system has been previously investigated. Klimer and Smith [12] and
Kilmer et al. [13] used artificial neural networks trained with Backpropagation
algorithm to construct empirical metamodels of computer simulations. In these
two studies, basic simulation tasks, such as prediction and comparison of
alternatives, were performed with neural approximations of a computer
simulation.

 In this study, data was obtained from computer simulation in order to build
a fast empirical model of the system. The inventory system simulation was
written in the C language and verified against the Kilmer and Smith [12]
simulation, which held all input parameters fixed except for reorder point s and
reorder quantity d. The data used to develop the approximation models consist
of 420 data points constructed with all possible combinations of 21 equally
spaced values of s between 0 and 100 (i.e., 0, 5, 10, . . . , 100) and 20 equally
spaced values of d between 5 and 100 (i.e., 5, 10, 15, . . ., 100). Simulation was
run for each combination of s and d to obtain the corresponding total cost, tc, in
a similar fashion as was done by Kilmer and Smith [12]. Each simulation run
resulted in one value of the response variable, total cost, and this response
depends on the values of the input variables, reorder point, s, and reorder
quantity, d.

Approximation of a Discrete Event ….

129

4. Evolutionary Neural Networks

 Evolutionary artificial neural networks [14, 15], include genetic algorithm
(GA) or other evolutionary algorithms in their operations, which are used to
perform various tasks such as weight training, architecture design, input
selection and initial weights selection. The combination of neural networks and
evolutionary computation has been intensively investigated in the past years.
The main goal of these studies is to determine the topology and training of a
neural network by an evolutionary algorithm that represents a neural network
structure and weights as individual genes. To name a few of these works: [16],
[17], [18] and [19].

 Weight training in ANNs is usually formulated as minimization of an error
function between target outputs and actual outputs and iteratively adjusting the
weights. Deterministic training algorithms like Backpropagation (BP) [20] and
Conjugate Gradient Backpropagation [21] are widely used in ANN training.
These algorithms are based on gradient descent search. They often get trapped
in a local minima of the error function and they are inefficient in finding a
global minima.

 The use of stochastic algorithms is another alternative for ANN training
[22], and they are less sensitive to local minima. Nevertheless, they are
generally slow compared to the fastest versions of gradient based algorithms,
since they perform global searches and implement probabilistic search operators
[23]. These algorithms include the use of Genetic Algorithm (GA) [24], and
evolutionary algorithms in ANN training. The points in the search space to be
examined are selected on the basis of probabilistic criteria. Therefore, stochastic
algorithms are less vulnerable to the local minima problem.

 It is more advantageous to apply a hybrid training algorithm, which
combines the advantages of both deterministic and stochastic approaches. The
stochastic algorithm is used to define the initial weights of the neural network
while the deterministic algorithm is used to perform local search. Examples of
these hybrid training algorithms include the combination of GA and BP
algorithms [25, 26] and the combination of simulated annealing and Conjugate
Gradient [27].

 The proposed evolutionary neural network was trained using differential
evolution algorithm [28, 29]. The evolutionary algorithm is used to derive the
connection weights and biases of the neural network, which are represented as
individuals in the population of the algorithm. Each differential evolution
chromosome stores a weight configuration that is improved from one generation

Hindi A. Al-Hindi 130

to another. One important feature of evolutionary algorithm is its population
based search strategy, where individuals in a population compete and exchange
information with each other to improve the solution of the problem.

5. Differential Evolution Algorithm

 Differential Evolution (DE) [28] is an improved version of GA for faster
optimization. Unlike simple GA that uses binary coding for representing
problem parameters, DE uses real coding representation. DE has several
advantages that include its simple structure and speed. Price and Storn [28] gave
the main principles of DE with single strategy, then, they suggested ten
different strategies of DE [29]. The selection of the strategy and key parameter
values are critical to the performance of DE. These control parameters are:
population size (NP), crossover constant (CR) and the scaling factor (F).

 There are several variants of DE. The following briefly describes the
DE/rand/1/bin scheme. More detail descriptions are given in [28-31]. DE
operates on a population, PG, of candidate solutions, not just a single solution. It
maintains a population of constant size that consists of NP real valued vectors
Xi,G, where i indexes the population and G is the generation to which the
population belongs.

 max,,1 ,...,0),...,(GGXXP GNPGG == (7)

Each vector Xi,G contains D real parameters (chromosomes):

 max,,,,1, ,...,0;,...,1),...,(GGNPixxX GiDGiGi === (8)

The values of the initial population, PG=0 , are initialized with random values

 DjNPirandx jij ,...,1;,...,1]1,0[0,, === (9)

where randj[0,1] denotes a uniformly distributed random value within the range
[0.0,1.0] that is chosen for each j.

 Vectors in the current population, PG, are randomly combined to create
candidate vectors for the next generation PG+1. The population of candidates, or
trial vectors Ui, G+1 is generated as follows:

 =∨≤−+

=+ otherwise
]1,0[randif).(

,,

,2,,1,,3,
1

Gij

jGrjGrjGrj
j,i,G x

kjCRxxFx
u (10)

Approximation of a Discrete Event ….

131

where,

i=1, . . ., NP; j=1, . . ., D

ieachforoncechosenindexparameterrandomDk };,...,1{∈

irrrNPrrr ≠≠≠∈ 321321 withselectedrandomly};,...,1{,,

]1,0(],1,0[+∈∈ FCR

 The randomly chosen indexes, r1, r2 and r3 are different from each other and
also different from the running index, i. New random integer values r1, r2 and r3
are chosen for each individual i. The index, k, refers to a randomly selected
chromosome which is used to ensure that each individual trial vector, Ui,G+1,
differs from its counterpart in the previous generation, Xi,G, by at least one
parameter. A new random integer value is assigned to k prior to the construction
of each trial vector i.

 F, NP and CR are DE control parameters and they remain constant during
the search process. F is a real-valued factor in the range [0.0,1+] that scales the
differential variations. NP is the size of the population. CR is the crossover
factor in the range [0,1] that controls the probability that a trial vector parameter
uj,i,G+1 will come from a randomly chosen, mutated vector

).(,2,,1,,3, GrjGrjGrj xxFx −+ instead of from the current vector, Xj,i,G. Usually
suitable values for NP, F and CR are obtained by trial-and-error using different
values of these parameters.

 The population for the next generation, PG+1, is selected from the current
population and the trial population UG+1 according to the following rule:

 ≤

= ++
+ otherwise

)()(

,

,1,1,
1,

Gi

GiGiGi
Gi X

XfUfifU
X (11)

where)(⋅f is the fitness (cost) function of the optimization process. Hence,
each individual of the current population is compared with its counterpart in the
trial population. Assuming that the objective function is to be minimized, the
vector with the lowest objective function value wins a place in the next
generation population. Therefore, all individuals in the next generation are as
good or better than their counterparts in the current population.

Hindi A. Al-Hindi 132

6. Results

 Two regression models were estimated using the 420 simulation data points.
The first is first order regression model and the second is second order
regression model, which are typically used in simulation metamodeling.

 Three ANN models were constructed using the same data: i) an artificial
neural trained with the Conjugate Backpropagation training algorithm, ii) an
evolutionary neural network trained with differential evolution, and iii) an
evolutionary neural network trained with hybrid training algorithm that
combines Conjugate BP and differential evolution algorithm. The DE algorithm
for ANN training was implemented using MATLAB scripts [29], whereas the
Conjugate BP was implemented using the Neural Networks Toolbox from
MATLAB®. All the ANN models had two inputs nodes, one corresponding to s
and the other corresponding to d and one output node corresponding to tc. In
addition, each network has one hidden layer with eight nodes, which were
selected after several experiments with a different number of nodes.

 The differential evolution algorithm requires the specification of several
parameters that include the size of the population (NP), crossover factor (CR)
and the scaling factor (F). In neural network training, the size of the population
is the number of the connection weights and biases. In a neural network with
two input nodes, eight hidden nodes and one output node, there are 31
connection weights and biases representing members of the population that will
go through the crossover and mutation operations during the training process.
The values of CR and F are selected by trial-and-error and after several
experiments, it appeared that CR=0.5 and F=0.8 are appropriate values.

 Each neural network was trained for a total of 5000 epochs. This number
of epochs was found to be the number at which there was no improvement in
the performance of any of the three neural networks. Training was evaluated
using the regularized performance function [32], which takes the following
form:

k
ww

n
eeE

TT

reg α+= (12)

where n

eeT is the mean square error, k
wwT is the mean square of the network

weights and biases and α is a regularization factor. The size of the training data
is n and the number of connection weights and biases is k. Using the regularized
performance function can improve the generalization ability of the neural
network [32]. Training was performed using a PC Pentium IV 2000 MHz with

Approximation of a Discrete Event ….

133

256MB RAM. Table (1) shows some of the training statistics for the three
training algorithms. Initial Ereg is the value of the regularized performance
function at the beginning of training (epoch=0) using the initial connection
weights and minimum Ereg is the value of the regularized performance function
at the end of training (epoch=5000), which represents the minimum value of
Ereg that can be achieved by the training algorithm.

 Table 1: Training statistics.

Training algorithm Initial Ereg Minimum Ereg Training time (minutes)

conjugate Backpropagation 23344.5 146.86 1.05

differential evolution 22603.8 88.95 19.13

hybrid training 88.95 53.23 21.46

 The hybrid training algorithm achieved the lowest Ereg value followed by the
differential evolution algorithm then the conjugate Backpropagation. The
conjugate Backpropagation algorithm took only 1.05 minute to run the specified
5000 epochs whereas the evolutionary algorithm took 19.13 minutes and the
hybrid algorithm took 21.46 minutes. Training a neural network using the
evolutionary algorithm requires more time compared to the conjugate
Backpropagation. In the evolutionary algorithm, the population consists of the
network connection weights and biases. During the training process, these
weights are updated using crossover and mutation to derive a better set of
weights, which takes more time compared to the Backpropagation algorithm
where weights are updated using a direct gradient descent procedure.

 The evolutionary ANN with differential evolution training algorithm was
retrained with a training goal set to Ereg value equals to 146.86, which is the
lowest Ereg value achieved by the conjugate Backpropagation in 5000 epochs.
The evolutionary ANN converged to the desired error value after 804 epochs.
This is a clear indication that although the evolutionary ANN requires more
training time, it is less susceptible to fall into a local minima compared with a
feed-forward ANN with backpropagation training algorithm.

 Table 2: Regression models results.

Model Regression equation R2 MAE

First order tc= 116.6+0.59s+0.096d 0.55 10.93
Second order tc=170.5-1.09s-1.01d+0.008sd+0.012s2+0.007d2 0.85 6.51

Hindi A. Al-Hindi 134

 Table 3: ANNs results.

Model Training algorithm R2 MAE

Feed-forward ANN conjugate Backpropagation 0.75 6.64

Evolutionary ANN differential evolution 0.88 6.49

Evolutionary ANN hybrid training 0.94 4.53

 Two evaluation criteria were used to evaluate the proposed approaches for
simulation metamodeling: the determinant coefficient (R2) and mean absolute
error (MAE) . The values of these criteria for the statistical models are shown in
Table 2 whereas Table 3 shows these values for the neural networks. The results
of the study show that: i) the evolutionary neural network outperforms the
statistical models and the feed-forward neural network trained with
Backpropagation algorithm, ii) the evolutionary neural network takes more time
in training, however, it requires fewer number of epochs to reach the same
performance as the feed-forward neural network, iii) the evolutionary neural
network is less susceptible to fall into local minima compared to the feed-
forward neural network, and iv) the neural network trained with hybrid training
algorithm outperforms all other models. The combination of evolutionary
algorithm and Backpropagation is more efficient than using evolutionary
training alone. In this case, the weights and biases derived by evolutionary
algorithm training are used as initial values for the Backpropagation algorithm.

 The response surfaces given in Figure 1 permit a visual comparison of the
models considered in the study. Figure 1a plots the response surface of the 420
simulation data points. Figures 1b through 1f plot the response surfaces of first
order regression, second order regression, a neural network with BP training, an
evolutionary ANN with DE training and an evolutionary ANN with hybrid
training respectively that were constructed using the 420 data points. The best
one from the ANN or the regression would be a response surface close to 1a.
These plots show that the response surface of the evolutionary ANN with
hybrid training (1f) is closer than other models to approximating the computer
simulation. The second closest is the response surface of the evolutionary ANN
trained with DE.

Approximation of a Discrete Event ….

135

Fig. 1c. Second order regression. Fig. 1d. ANN with BP training.

Fig. 1a: Direct simulation 420 points. Fig. 1b: First order regression.

Fig. 1e. ANN with DE training. Fig. 1f. ANN with hybrid training.

Hindi A. Al-Hindi 136

7. Conclusion

 Decision making using simulation models can be time consuming because
of the computational efforts of running the simulation many times before a
decision can be made. This has motivated the field of simulation metamodeling,
intended to build approximations of simulation models. There are fundamental
reasons for using a neural network approach to simulation metamodeling, which
include universal approximation ability.

 This paper proposed a new model for simulation metamodeling and
compared its performance to available models. The results of the study
demonstrated the capabilities of evolutionary ANNs in building simulation
metamodels. The evolutionary algorithm can be used by itself to train the
evolutionary neural network or in combination with the Backpropagation
algorithm. In either case, it will perform better than statistical models or a
neural network trained with Backpropagation.

References

[1] Barton, R. R., Simulation Metamodels, Proceedings of the 30th Conference on Winter

Simulation, Washington, DC., 167-176 (1998).
[2] Barton, R. R., Metamodels for Simulation Input-Output Relations, Proceedings of the

1992 Winter Simulation Conference, J. J. Swain, D. Goldsman, R. C. Crain and J. R.
Wilson (eds), 289-299 (1992).

[3] Giunta, A. A. and Watson, L. T., A Comparison of Approximation Modeling Techniques:
Polynomial Versus Interpolating Models, Proceedings of the 7th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Design, St. Louis, MO, 392-404 (1998).

[4] Jin, R., Chen, W. and Simpson, T. W., Comparative Studies of Metamodeling Techniques
under Multiple Modeling Criteria, Journal of Structural and Multidisciplinary
Optimization, 23, 1, 1-13 (2001).

[5] Kleijnen, J. P. C., Statistical Tools for Simulation Practitioners, Marcel Dekker, New
York (1987).

[6] Aussem A., Hill D., Wedding Connectionist and Algorithmic Modeling: Towards
Forecasting Caulerpa Taxifolia Development in North-Western Mediterranean Sea,
Ecological Modeling, 120, 225-236 (1999).

[7] Kilmer, Robert A. Smith, Alice, and Shuman, Larry J., Computing Confidence Intervals
for Stochastic Simulation Using Neural Networks Metamodels, Computers and Industrial
Engineering, 36, 391-407 (1999).

[8] Myers, R. H. and Montgomery, D. C., Response Surface Methodology: Process and
Product Optimization Using Designed Experiments. Wiley and Sons, New York (1995).

[9] Venter, G. Haftka, R. T. and Starnes, J. H. Jr., Construction of Response Surfaces for
Design Optimization Applications, 6th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Bellevue, WA, AIAA, 1, 548-564 (1996).

[10] Hornik, K, Stinchcombe, M, and White, H., Multilayer Feedforward Networks are
Universal Approximators, Neural Networks, 2, 359-366 (1989).

[11] Law, A. and Kelton, D., Simulation Modeling and Analysis. McGraw Hill, New York
(1991).

Approximation of a Discrete Event ….

137

[12] Kilmer, Robert A. and Smith, Alice, Using Artificial Neural Networks to Approximate a
Discrete Event Stochastic Simulation Model, Intelligent Engineering Systems Through
 Artificial Neural Networks, 3, 631-636 (1993).

[13] Kilmer, R. A., Smith, A. E. and Shunman, L. J., Using Neural Network Metamodels to
Develop Prediction Intervals for Discrete Event Simulation, Intelligent Engineering
Systems Through Artificial Neural Networks, 4, 1141-1146 (1994).

[14] Yao, X., A Review of Evolutionary Artificial Neural Networks, International Journal of
Intelligent Systems, 8, 4, 539-567 (1993).

[15] Yao, X., Evolutionary Artificial Neural Networks, International Journal of Neural Systems,
4, 3, 203-222 (1993).

[16] Whitley, D. , Starkweather, T. and Bogart, C., Genetic Algorithms and Neural Networks:
Optimizing Connections and Connectivity, Parallel Computing, 14, 347-361 (1990).

[17] Yao, X. and Liu, Y., Towards Designing Artificial Neural Networks by Evolution,
Applied Mathematics and Computation, 91, 1, 83-90 (1998).

[18] Fogel, D. B., Fogel, L. J. and Porto, V. W., Evolving Neural Networks, Biological
Cybernetics, 63, 487-493 (1990).

[19] Yao, X and Liu., Y., Evolutionary Artificial Neural Networks that Learn and Generalise
Well, Proceedings of the 1996 IEEE International Conference on Neural Networks,
Washington DC, 159-164 (1996).

[20] Rumelhart, D. E., Hinton, G. E. and Williams, R. J., Learning Internal Representations
by Error Propagation, In Parallel Distributed Processing, Rumelhart, D. E. and
Mcclelland, J. L. (Eds), 1, MIT Press, Cambridge, 318-362 (1986).

[21] Moller, M. F., A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning,
Neural Networks, 6, 525-533 (1993).

[22] Yao, X. and Liu. Y., A New Evolutionary System for Evolving Artificial Neural Networks,
IEEE Transactions on Neural Networks, 8, 3, 694-713 (1997).

[23] Yao, X., Evolutionary artificial neural Networks, Encyclopedia of Computer Science and
Technology, 33, 137-170 (1995).

[24] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts (1989).

[25] Belew, R. K., McInerny, J. and Schraudolph, N. N., Evolving Networks: Using the
Genetic Algorithm With Connectionist Learning, Proceedings of the Second Conference on
Artificial Life, Langton, C.G.; Taylor, C. ; Farmer, J. D. and Rasmussen, S. (Eds), 511-
548, (1991).

[26] Kinnebrock, W., Accelerating the Standard Backpropagation Method Using a Genetic
Approach, Neurocomputing, 6, 583-588 (1994).

[27] Masters, T., Advanced Algorithms for Neural Networks: a C++ Sourcebook, John Wiley
& Sons, New York (1995).

[28] Price, K. and Storn, R., Differential Evolution – A Simple Evolution Strategy for Fast
Optimization, Dr. Dobb’s Journal, 22, 4, 18-24, and 78 (1997).

[29] Price, K. and Storn, R., Web Site of DE, March 2003. URL:
http://www.ICSI.Berkeley.edu/~Storn/code.html

[30] Storn, R., System Design by Constraint Adaptation and Differential Evolution, IEEE
Trans. on Evolutionary Computation, 3, 1, 22-34 (1999).

[31] Storn, R. and Price, K., Differential Evolution - a Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces, Journal of Global Optimization, 11, 341-359
(1997).

[32] Chen, D and Hagan, M.T., Optimal Use of Regularization and Cross-Validation in Neural
Network Modeling, Available via URL:
http://hagan.ecen.ceat.okstate.edu/chen_hag_nn99.pdf

Hindi A. Al-Hindi 138

 تقريب محاكاة الأحداث العشوائية الوثابة باستخدام شبكة
 عصبية اصطناعية تطورية

 هندي بن عبداالله الهندي

 جامعة الملك سعود–كلية الاقتصاد والإدارة
 المملكة العربية السعودية–فرع القصيم

تهدف المحاكاة باستخدام الحاسب الآلي إلى إيجاد : المستخلص

وعلى الرغم . من المدخلات والمخرجاتالعلاقة بين مجموعة
من شيوع نماذج المحاكاة كأدوات تجريبية إلا أنها في كثير من
الحالات تتطلب وقتًا طويلاً للحصول على النتائج المطلوبة لذلك

ويهدف هذا . من الضروري استخدام تقريب لنماذج المحاكاة
 البحث إلى استخدام شبكة عصبية اصطناعية تطورية لتقريب

الشبكة العصبية الاصطناعية . محاكاة نموذج مخزون عشوائي
التطورية المقترحة لتقريب المحاكاة تم مقارنتها مع شبكة
عصبية اصطناعية تقليدية تم تدريبها باستخدام أسلوب الاتجاه

كما تم مقارنة الشبكة العصبية المقترحة مع نماذج . للخلف
 . االانحدار الخطية وذلك للتأكد من كفاءته

