
JKAU: Eng. Sci.. vol. 4, pp. 117·122 (1412 A.H.l1992 A.D.)

An Algorithm for Solving the Traveling Salesman Problem

M. HAMED

College of Arts and Science,
Bahrain University, [sa Town, Bahrain

ABSTRACT. The main objective of the paper is to present an algorithm for
finding a solution to the traveling salesman problem. The solution found by
the algorithm being an optimal one or not, depends on the values ofthe ele
ments of the cost matrix. The algorithm is described and its time complexity
is calculated and compared to other algorithms in the literature. It is shown
that the proposed algorithm is efficient as it finds the solution in shoner
time if compared to other algorithms.

I. Introductioo

The ordinary traveling salesman problem (TSP) is formulated in the literature[J1 as:
"Finding the tour with minimum cost for passing through each of n cities exactly
once, starting from and ending at an arbitrary city". This problem is classified as
being NP-complete[2l. Actually, there are several variations of the TSP, e.g., time
dependent TSPfJAJ, and stochastic TSPI5J. Each variation lead to a rather different
problem. Our main concern here is the ordinary TSP.

Exhausti\'t: search for an optimal solution by trying all possible permutations is a
method which is not referred to any specific author. The time of such an approach is
o (n!) since we must consider (n - I)! different permutations, and each permutation
takes 0 (n) time to evaluate. Another algorithm due to Held and Karpl6! gives the op
timal solution in time O(n2 2n). This algorithm uses dynamic programming
techniques. Other algorithms in the literature do not give an optimal solution, but
rather they give a "good" solution based on heuristics. Examples of such heuristics
are found in KruskalPI and Lin & Kernighan l8J . When comparing different al-

117

118 M. Hamed

gorithms of solving the problem, it is necessarry to consider only those ones that yield
an optimal solution. The time complexity of the proposed algorithm istlO [2n/2 + m log2 _m].

The idea of the algorithm depends on isolating the needed elements of the cost
matrix, sorting them in ascending order, then synthesizing the tour in such a way to
include minimum values and exclude maximum values of the cost matrix.

It should be noted that the solution found by the algorithm mayor may not be an
optimal one. This is dependent upon the values of the cost matrix. The algorithm
checks whether the given solution is seen to be an optimal one or there might be a
pos.sibility to be a near-optimal solution. This is realized through the satisfaction of
some relationship between some elements of the cost matrix.

In section 2 of the paper, the proposed algorithm is described..Also the time com
plexity of the algorithm is calculated and compared to other algorithms in the litera
ture.

2. The Proposed Algorithm

2.1. General Principles

The principles according to which the algorithm is designed are:
1 - As the cost matrix is symmetric, then only the elements of the upper triangle

are needed.
2 - -The minimum cost tour is synthesized basically from the first n/2 low-value

cost elements which incorporate k nodes, plus some additional elements that incor
porate r remaining nodes. Permutations are tried for different possible positions of
the basic and remaining nodes.

3 - As the choice of the start city of the tour is immaterial, then the number of per
mutations can be reduced as s.everal tours may have the same cost elements but differ
only in the start point.

4 - The solution is exactly an optimal one if Sl < S2.

2.2 Description of the Algorithm

The input to the algo~ithmis an n x n cost matrix C. As the cost matrix is symmet
ric (c ij = cj) and diagonal el~ments (c i) are zeros, then the number of unrepeated
non-zero elements (upper ttiangle) is m = [n x (n - 1)/2]; call them effective ele
ments. It should be noted' that each element of the matrix C is an arc whose head.and
tail nodes are cities (row and column).

The first step of the algorithm is to sort the effective elements in ascending order
and put them in vector A. The corresponding head and tail nodes are put in vectors S
and E respectively. Then, a check is made to see whether the solution is an optimal
one. The next step is to synthesize the tour with minimum cost by including the first
[n/2] elements of vector A and excluding the last [n/2] elements. The maximum
number of tours to be synthesized is NMAX = 2/ n / 2 J.

An Algorithm for Solving... 119

The algorithm works as follows:

1 - Build vector A from the upper triangle elements of the cost matrix C (without
diagonal elements). While building vector A, the other two vectors Sand E are filled
with start and end cities of the corresp...onding cost elements respectively. Thus ele
ment Si represents the start city of the cost element Ai' while element Ei represents
the end city of A~..

2 - Sort the elements of vector A in ascending order. This can be done using
Quicksort[9). Note that vectors Sand E have to suffer from corresponding rearrange
ments.

3 - Check whether the given solution is seen to be an optimal one or there is a pos
sibility to be a near-optimal solution.

4 - Use the first nl2 elements of Sand E to build the first part of the tour with
minimum cost. The main idea here is to group the cities' numbers of Sand E into
clusters. A cluster is a set of city numbers that can be considered as a part of the tour.
The arcs resulting from considering each two adjacent cities in the cluster are impor
tant in finding the tour with minimum cost. A cluster is built according to the follow
ing procedure :

a - Put the first element of both Sand E into the first two elements of R.
b - Use i to point to the next element of Sand E. Assume that k is the number of

elements in R. Search for either Ei or Si to be equal to Rj U== 1, 2, ... , k) if yes, then
the element of Si (or E) would be added to R in the proper position (of an existing
cluster); otherwise add both elements Si and E i at the rear end of R (incrementing k)
to make a new cluster. Note that if element j of R was used before in one of the clus
ters as indicated by the corresponding element j of vector U, then it cannot be used
again in a new cluster.

5 - Synthesize the tour. The tour is synthesized by grouping different clusters, to
gether with remaining nodes. As there are at most [n/2 J + 1 alternative (clusters +
remaining nodes), and each alternative has at most two different permutations, then
the maximum number of permutations is 21 n / 2 J + 1 • Because of the fact that the tour
may arbitrarily start at any city, we will find that the maximum number of permuta
tions can be reduced to 2I n/2} + J /2 (i. e., 2[n/2]) only (half of the permutations are re
peated with different start city).

2.3 The Optimal Solution

The condition for an optimal solution is that 51 < S2.

Proof

- From the definition of the tnatrix C and vector A, the label of each node is men
tioned in the set NS U NE an equal number of times equal to

n x (n - 1) x 2 -;- n == (n - 1) times.
2

M. Hamed

- The maximum number of times a node is mentioned in the excluded part of
A (R4) is nl2 (number of elements in R4).

- As (n - 1) is > n12, then a tour can be synthesized without using the excluded
part of A (R4).

- As the set Rl contains minimum values, then the worst case for a tour including
elements of Rl and does not include elements of R4 is that one consisting of elements
in Rl U R3, giving a tour of cQst Sl.

- On the other hand, the best case for a tour that does not include elements of R1
is that tour consisting of elements in R2, giving a tour of cost S2.

- Thus if 51 < 52 then the worst case of a tour including elements in Rl is better
than the best case of a tour where elements of R1 are excluded. This proves that the
optimal solution is obtained when 51 < 52.

2.4 Time Complexity5I

If n is odd, then: minimum value of k =: n - 1- (n - 1) 12- 1
& maximum value of k =: n - 1

If n is even l then: minimum value of k =: n - (nI2)-1
& maximum value of k == 11

remaining nodes == {r} == {n} - {k}
number of slots =: t =: number of clusters =: k

Time Complexity of the proposed algorithm 2ln/2] + m log2 m
Time Complexity of Exhaustive Search Algorithm == O(n!)
Time Complexity of Dynamic Programming Algorithm =: 0(n2 211

)

In order to illustrate the difference in time between the different algorithms, con
sider the case where n == 20 :

The time of Exhaustive Search Algorithm is == 2.432902 * 10lH
The time of Dynamic Programming Algorithm is == 41,943,040
The time of the proposed algorithm is == 4800

Symbols

A vector of needed eleInents (dimension m).
m number of needed elements [== n(n - 1) / 2].
5 vector of heads of arcs.
E vector of tails of arcs.
R a temporary vector for building the tour.
U usage indicator vector.
t number of clusters.
k number of nodes corresponding to the first (n - 1) /2 low-value elements

ofA.
r remaining nodes (== n - k).
Rl the set of the first n/2 elements of vector A.
R2 the set of n elements following Rl.

An Algorithm for Solving...

R3 the set of n/2 elements just preceding R4.
R4 the set of the last n/2 elements of A.
Sl sum of elements of Rl and R3.
S2 sum of elements of R2.
NS set of nodes mentioned in vector S.
NE set of nodes mentioned in vector E.

References

121

[11 Aho, A.A., Hopcroft, J.E. and Ullman, J.D., Data Structures and Algorithms, Addison-Wesely,
Reading, Mass., pp. 323-335 (1983).

[2] Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-Com
pleteness. W.H. Freeman, pp. 206-218 (1979).

[3] Hadley, G., Nonlinear and Dynanlic Programming, Addison-Wesely, Reading MA (1964).
[4] Picard, J.e. and Queyranne, M., The time-dependent traveling salesman problem and its applica

tion to the tardiness problem in one-machine scheduling, Oper. Res., 26: 86-110 (1978).
rS] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B. (eds.), The Traveling Salesman

Problem: A Guided Tour of Combinatorial Optimization, John Wiley, pp. 31-36 (1985).
l6] Held, M. and Karp, R.M., A dynamic programming approach to sequencing problems, SIAM J.

Appl. Math. 10: 196-210 (1962).
r7] Kruskal, J.B. Jr., On the shortest spanning subtree of a graph and the traveling salesman problem.

Proc. AMS 7 (1): 48-50 (1956).
(8] Lin, S. and Kernighan, B.W., A heuristic algorithm for the traveling salesman problem, Oper. Res.

21: 498-516 (1973).
(91 Knuth, D.E., The Art ofComputer Prografnming, vol. 3. Addison-Wesely, Reading MA, pp. 73-180

(1973).

122 M. Hamed

~l>~~

• ~~, - ~~J..o - ~~,w~

~ ~j).,>- J>- ~~ J~\ Ih ~ ~)\ ~~\~ .~\

\~l ~\j\ j.J-\ ~ \j)~\ Q,.4~ ~wU\ j.J-\ ~~ 0i ;lJ:-1~J . J~I ~yl

~I Ih '-?Y..J . 0..u1 ~.;-J\ ~LS:; J:' ~\ ~\ ~ bJ?\~~)1;

~\ ~J ;";J~J .~ \j)\j\ ~}\~ ~L:>-J \j)~ ~l5 ~J ~

J jJ--\ Jl~ ij).fl\ Ih 0i~ ~~ ~ ~\ oh j.J- 4jJ~\ ~~j)~\ ~

. G\~~~i~j

