
Forensic Science International: Genetics 30 (2017) 18–23
Short communication

Fast STR allele identification with STRait Razor 3.0

August E. Woernera,*, Jonathan L. Kinga, Bruce Budowlea,b

aCenter for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
bCenter of Excellence in Genomic Medicine (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia

A R T I C L E I N F O

Article history:
Received 5 April 2017
Received in revised form 8 May 2017
Accepted 29 May 2017
Available online 1 June 2017

Keywords:
STRait Razor
Short tandem repeats
Bioinformatics
Massively parallel sequencing
Flanking variation

A B S T R A C T

The short tandem repeat allele identification tool (STRait Razor), a program used to characterize the
haplotypes of short tandem repeats (STRs) in massively parallel sequencing (MPS) data, was redesigned.
STRait Razor v3.0 performs �660� faster allele identification than its previous version (v2s), a speedup
that is largely due to a novel indexing strategy used to perform “fuzzy” (approximate) string matching of
anchor sequences. Written in a portable compiled language, C++, STRait Razor v3.0 functions on all major
operating systems including Microsoft Windows, and it has cross-platform multithreading support. In
silico estimates of precision and accuracy of STRait Razor v3.0 were 100% in this evaluation and results
were highly concordant with those of Strait Razor v2s. STRait Razor v3.0 adds several key features that
simplify the haplotype reporting process, including simple filters to remove low frequency haplotypes as
well as merging haplotypes within a locus encoded on opposite strands of the DNA molecule.

© 2017 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.else vie r .com/locate / fs ig
1. Introduction

STRait Razor is a bioinformatics suite used to identify and
characterize sequence and length-based polymorphisms in MPS
data. STRait Razor consists of two major components: The STRait
Razor perl script, which identifies putative haplotypes, and the
Strait Razor Excel workbook, which is used to collate, annotate and
visualize said haplotypes. A complete redesign was performed on
the former; a tool that until now was restricted to unix-type
environments. This update provides both a stable code-base that
operates on all major operating systems including Microsoft
Windows and an indexing strategy tailored to the identification of
sequence variants based on anchor sequences.

STRait Razor adopts a (now) relatively common approach (see
Refs. [1–7]) to extracting sequence variants at known loci. In brief,
a locus is first identified, and then 50 and 30 anchoring sequences
that are near (though not necessarily adjacent to) the locus are
selected. Note that STRait Razor was designed initially for
capturing short tandem repeats (STRs), but it can now detect
single nucleotide polymorphisms (SNPs) and insertions/deletions
(indels). The presence of these anchors in the correct orientation,
as well as a user-defined motif-type residing between them (e.g.,
CATA) is used to associate the intervening haplotype with a given
locus. This haplotype then can be reduced to a length-based
* Corresponding Author.
E-mail address: August.Woerner@unthsc.edu (A.E. Woerner).

http://dx.doi.org/10.1016/j.fsigen.2017.05.008
1872-4973/© 2017 Elsevier B.V. All rights reserved.
polymorphism call (e.g., 19.2), and the haplotype itself can be used
for downstream inferences.

This STRait Razor update uses a novel indexing strategy to
locate anchor sequences. Before the mechanics of this index are
described some nomenclature must be described. The term string
refers to a contiguous sequence of characters (e.g., nucleotides),
with the prefix of length n of a string being its first n characters, and
the like suffix of a string being its last n characters. A substring of a
string then can be taken as a prefix of a suffix (or a suffix of a prefix)
of a string. In general, a substring search can be exact, i.e.,
permitting no discordant bases, or approximate, i.e., permitting
some number of mismatches between strings or substrings. String
search can be further categorized into two types: offline and online
(for review see [8]). For the latter, the substrings sought (e.g., the
anchors) first can be organized, or indexed, with this investment in
computation time ideally leading to fast search times. With the
former, no index is created and the patterns are searched “as is”.
Indexing is a common search technique. For example, BWA [9] and
bowtie2 [10] both use online strategies, organizing the reference
genome into a Burrows Wheeler-transformed [11] suffix array [12]
prior to approximate string search. Algorithms that identify STR-
based polymorphisms have primarily used offline strategies [3–6],
often relying on the bitap algorithm in the unix utility agrep [13] or
tre-agrep [14], or on semi-global alignment [5] (but see [2,15],
which do a mixture of techniques).

In this paper STRait Razor v3.0 is introduced, which uses a
simple and effective purely online indexing strategy, organizing
anchor sequences into a trie [16] (Fig. 1) to facilitate fast

http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsigen.2017.05.008&domain=pdf
undefined
http://dx.doi.org/10.1016/j.fsigen.2017.05.008
http://dx.doi.org/10.1016/j.fsigen.2017.05.008
http://www.sciencedirect.com/science/journal/18724973
www.elsevier.com/locate/fsig


Fig. 1. A trie composed over three sequences. Each circle corresponds to a node in
the trie, while labeled edges (arrows) indicate valid paths (i.e., prefixes of one or
more sequences in the trie). If a node corresponds to the last letter of a word in the
trie, it is marked with the index of that sequence (e.g., 3 for read AC). Shared prefixes
are shown in green, while unique suffixes are shown in blue/red. Exact search of a
word in a trie terminates whenever a node with the appropriate edge label fails to
be found in the search, in which case all indexes found in the traversal thus far are
returned. For instance, search of the word ACT would search the first 3 nodes (2
edges) as the edges A followed by C are found. The search then would record index 3,
indicating that the third sequence in the trie matches a prefix of the queried word,
and terminate as no edge T is found from this node. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

A.E. Woerner et al. / Forensic Science International: Genetics 30 (2017) 18–23 19
approximate string search. Rather than implicitly searching this
trie (e.g., [9]), STRait Razor explicitly queries the trie in a manner
that supports fast fuzzy substring search of MPS data. To assess the
accuracy and the overall performance of STRait Razor v3.0, both in
silico and empirical experiments were performed to assess STR
variation in MPS data. In silico experiments were used to assess the
sensitivity and accuracy of STRait Razor, while empirical experi-
ments assessed timing and consistency of STRait Razor v3.0 with
that of v2s [7].

2. Materials and methods

2.1. Algorithm description and implementation

STRait Razor applies a series of algorithms to aid in the analysis
of both length-based as well as sequence-based markers in MPS
data. While the previous versions of STRait Razor implemented
fuzzy matching with the unix utility tre-agrep [13] and was written
in a manner tailored to unix/linux operating systems, this original
design strategy had practical and algorithmic limitations. In
practice, the reliance on unix restricts the computational
environment of STRait Razor, precluding its use in typical Windows
systems. Algorithmically, previous iterations of STRait Razor
applied the bitap algorithm to each anchor sequence indepen-
dently. Thus, given a set of reads composed of n bases in total and k
anchor sequences each of length at most m, the run-time of the
original STRait Razor is O(knm) (treating the Hamming distance as
constant). Further, traditional implementations of bitap assume
that m is at most the size of a machine word (typically 32- or 64-
bits/bases), an assumption that while generally true may not
always hold.

To perform faster search of anchors, STRait Razor v3.0 first
organizes them into a data structure that facilitates fast substring
search. While anchors can be indexed and searched using
traditional alignment strategies, there are several key properties
that would fail to be exploited with this design. First, the number of
anchoring sequences in practice is vastly outnumbered by the
number of bases searched (k << n), and anchor sequences
themselves are typically quite short (m �30 bp). Second, while
anchor sequences are found typically using fuzzy searching, the
level of approximation employed in this search is quite small (i.e.,
in general matching permits at most one base difference). Given
that there are 3m possible single-base substitutions to an anchor
sequence of length m, one can enumerate all permutations of all
anchors explicitly in O(km) time (with both k and m being small in
practice).

Rather than using traditional approximate string matching
techniques, STRait Razor v3.0 performs fuzzy string matching
using exact string matching techniques taken over all permuta-
tions of anchor sequences. In particular, STRait Razor v3.0 first
finds substrings of MPS reads that have a maximum Hamming
distance of one to a given anchor (i.e., permitting at most one
single-base substitution between the anchor and the substring). To
do this, STRait Razor v3.0 uses a trie [16] composed of all k anchor
sequences (Fig. 1) and all possible single-base substitutions of
these anchors. To find matching anchors, one need only perform a
top-down search of the trie, beginning initially with the first base
in the read. Such a search encounters at most m + 1 nodes in the trie
(and by proxy, only the first O(m) bases in the read), and such a
search finds every single anchor that is a prefix of the read
permitting a single substitution (i.e., 1-base change). Search of the
entire read continues by considering every possible suffix of the
read; i.e., starting at the second base, third base, etc., until the read
is exhausted. Thus, this trie search strategy finds all anchor
sequences that match prefixes of suffixes (i.e., substrings) of a
given read in a manner consistent with semi-global alignment.

This search strategy has several interesting properties. While
traditional offline approaches would search for each anchor
sequence consecutively, this search-style finds all anchors



Fig. 2. Runtimes (y-axis) of STRait Razor v2s, STRait Razor v3.0 and BWA on a single
sample on multiple cores (x-axis). v3.0 (diamonds) uses a trie to index anchor
sequences, while v2s (triangles) uses the bitap algorithm. Runtimes for BWA mem
(astrisks; mapping to the hg38 genome) are provided as a reference of typical
genomic processing times. The runtimes shown are means � 2 standard deviations
estimated over ten replicates. Note the log2 scale of the y-axis.

20 A.E. Woerner et al. / Forensic Science International: Genetics 30 (2017) 18–23
simultaneously. Further, top-down trie search is, in the worst-case,
invariant to both k and the number of permutations chosen over
anchor sequences. Thus, each base in the read corresponds to an O
(m) time operation on the trie, which implies an overall search
time that is O(nm) for finding matching anchor sequences. Search
times in practice are likely �n on average, as most searches do not
terminate in a matching anchor sequence and instead terminate
much earlier in the trie traversal. As k, m, and the level of
approximation used in search are small in practice, the memory
footprint of this trie index is small. In particular, a trie composed of
a single (non-permuted) anchor sequence of length m requires
m + 1 nodes in the trie, and there are 3m possible permutations of
any anchor. Thus, to store every single base substitution of all k
anchors requires O(km2) space.

Given the above description for finding matching anchors, the
algorithm of STRait Razor v3.0 on a single read is as follows:

1. For a read of length j, search the trie starting at position 1, 2, . . .
j in the read for matching anchor sequences.
� For each matching anchor found, record the position and
orientation of the matching anchor.

� For each matching motif found, mark an STR as being valid if it
occurs after its corresponding anchor.

2. For every STR queried:
� If the correct anchors are found in the correct orientation,
record the intervening haplotype

STRait Razor v3.0 indexes both the leading anchor (50 of the
locus), the trailing anchor (30 of the locus), as well as their reverse
complements. Matches found in line i of the above algorithm thus
correspond to anchors that may or may not be in the correct
orientation with respect to strand. This potential inconsistency is
addressed in line 2, which requires that both anchors be found in
the same orientation, and if, say, the read is on the positive strand,
then the 50 anchor must be found first followed by the 30 anchor.
Motifs also are stored in the trie, and a STR is marked as being valid
if the motif occurs after (that is, 30 of the 50 anchor and 50 of the 30

anchor) a specified anchor. The intervening haplotypes then are
recorded if both the 50 and 30 anchors are found in their correct
orientation, and they are marked as valid. The number of times
each haplotype is found and the STR name and allele call are
reported by STRait Razor v3.0.

STRait Razor v3.0 adds several other new features to simplify
the reporting process. STRait Razor reports unique haplotypes as
found on both the positive and negative strands, as they are often
found natively in MPS data. As recording the same haplotype on
both strands is redundant, STRait Razor v3.0 can optionally reverse
complement haplotypes encoded on the negative strand, placing
them onto the positive strand (under the assumption that the
anchors themselves are encoded on the positive strand), as well as
reporting the number of occurrences of the haplotype on both
strands. STRait Razor v3.0 can also optionally filter loci by “type”
(see Locus specifications), allowing the user to only select, say,
autosomal or X-linked loci, or any other user-defined type. Low-
frequency haplotypes can be removed from the output of STRait
Razor v3.0, thus allowing for quick and easy thresholds to be set
prior to the results being reported.

While previous versions of STRait Razor relied on haplotype
lengths, and their associated allele calls, that have been defined a
priori, STRait Razor v3.0 instead computes allele calls without
expectations on length. In particular, previous versions of STRait
Razor used a lookup table to associate a haplotype length with an
allele length. A byproduct of this approach was that haplotypes
whose lengths were not included in this table were omitted from
the reporting process. STRait Razor v3.0 instead uses the more
general approach taken by capillary electrophoretic (CE) methods
to name haplotypes. In particular, v3.0 uses the number of
canonical non-STR associated bases within the target region,
termed the offset, and the canonical motif length, as they are
defined in the locus configuration file. Allele lengths are then

computed as the integer division of haplotype length�of f set
motif length and with the

microvariant nomenclature being the remainder of this computa-
tion. This approach does not necessarily reflect the true length of
the STR per se, but instead provides a unique name for a given
haplotype length that generally corresponds to the number of
repeating units in the STR as would be measured using the CE. Take,
for instance, the locus D13S317 which contains a four nucleotide
deletion in its flanking region. While the number of repeats within
the repeat region may be 12, the CE-based allele may be an 11.

STRait Razor v3.0 is written in C++ and thus operates on all
major operating systems including Windows and any of a variety of
unix-based operating systems including OS X. STRait Razor v3.0 is
multithreaded, allowing it to exploit multi-core computer
architectures. Multithreading is implemented by statically assign-
ing different threads to evaluate different reads in parallel, with a
separate “producer” thread that loads reads into a double-buffer.
STRait Razor v3.0 supports uncompressed fastq files and the
standard input stream, allowing the tool to accommodate
compressed file formats (e.g., bam, gzip, bzip2) and to function
in analysis pipelines. STRait Razor v3.0 is both freely available and
open source under the MIT license.

2.2. Locus specifications

STRait Razor v3.0 targets loci that have been identified a priori,
and the rules for detecting these loci are described in the locus
configuration file. The configuration file specifies the name of the
STR, a user-defined type (e.g., Autosomal, X-linked or any other
user-defined name), the 50 and 30 anchor sequences, and the period
and offset of the STR. The anchor sequences given are assumed to
be on the positive strand. STRait Razor v3.0 also allows for a
quantification of the number of times a particular anchor sequence
can be found. This capability allows for identification and
extraction of haplotypes from loci that have been duplicated,



A.E. Woerner et al. / Forensic Science International: Genetics 30 (2017) 18–23 21
and loci in which the anchor sequence itself also has been
duplicated. One example of this function is seen with the loci
DYS389I and DYS389II. As has been reported previously [17,18],
both loci have identical anchor sequences, and DYS389II properly
contains DYS389I. This case can be handled by specifying that the
anchor sequence for DYS389II must occur twice, with STRait Razor
v3.0 reporting the longer of the two possible interpretations. A
byproduct of this rule is that reads where PCR artifacts have caused
duplication of the anchor sequence (perhaps because of hairpins)
may cause a single read to be associated with two possible
intervening (and overlapping) haplotypes. In this case, STRait
Razor v3.0 would report neither haplotype as the correct number
of anchor sequences were not found and an unambiguous
haplotype cannot be determined.

2.3. Samples, library preparation and sequencing

STRait Razor v3.0 was evaluated both with in silico reads
(below) and with reads empirically generated. For the latter, a
subset of samples from [19] were chosen to assess the speed and
relative accuracy of STRait Razor v3.0. Note that the ForenSeqTM

panel actually encodes an additional locus (DYS461), and as such,
despite the title of [19], that study encodes a total of 59 STRs (plus
Amelogenin). Briefly, anonymized samples, as per UNTHSC IRB-
approved protocols, were analyzed using the ForenSeqTM DNA
Signature Prep Kit the MiSeq FGx Forensic Genomics system
(Illumina). All analyses were performed on a Dell PowerEdge T620
server with dual 10-core Intel Xeon E5-2670v2 2.5 GHz processors,
and all plotting and statistics were performed in the statistical
computing language R [20] using the graphics library ggplot2 [21].
Table 1
The number of extracted sequences from STRait Razor v3.0 (c v3.0) versus STRait
Razor v2s (c v2s), as well as the haplotype differences (d) and atypical read counts
(a). A single sample (C96) was run on both STRait Razor v3.0 and STRait Razor v2s,
and the number of extracted sequences was computed and the haplotype identities
were compared. The count (c) of the number of reads associated with each STR are
shown for both STRait Razor v3.0 and STRait Razor v2s. Haplotype differences (d)
are a count of the number of reads that are associated with a STR found by one
program and not the other. For example d v2s counts the number of reads associated
with a given STR that were identified by v2s and not v3.0. Note that a small absolute
difference (residual) in c for a locus tends to imply small d. a counts the number of
reads associated with an STR that were found by v3.0 and not reported by v2s, and
the haplotype lengths did not match the a priori expectations of v2s. Loci with an
absolute residual in c < 2 are omitted.

Locus c (v2s) c (v3.0) d (v2s) d (v3.0) a

DYF387S1 3014 3135 130 9 3
DYS389II 2024 2123 124 25 0
DYS389I 12,135 12,071 54 118 118
DYS19 1181 1231 50 0 0
vWA 1901 1938 37 0 0
DYS448 3308 3287 41 62 18
DYS533 2565 2582 17 0 0
D1S1656 1752 1762 10 0 0
D8S1179 7682 7691 9 0 0
D5S818 1794 1803 9 0 0
D18S51 3792 3799 7 0 0
D6S1043 7649 7654 5 0 0
DYS385 6915 6910 0 5 5
DYS461 1085 1089 5 1 1
DYS576 10,003 10,007 5 1 1
TPOX 4696 4700 4 0 0
DXS8378 4025 4029 4 0 0
DYS481 2778 2776 0 2 2
D21S11 2267 2269 3 1 1
CSF1PO 2160 2162 2 0 0
Amelogenin 3166 3164 1 3 3
2.4. In silico reads

To assess the sensitivity of STRait Razor v3.0, locus config-
urations from [19] were used to generate reads that a priori are
associated with a given STR marker. The configuration file of Strait
Razor v2s [7] specifies the two anchor sequences, the STR motif
pattern, and valid (i.e., known) lengths between the anchors and
their associated length-based STR nomenclature. Using this
information, synthetic reads parameterized off of the 59 markers
(plus Amelogenin) in [19] were generated using the following
algorithm:

1. For a given marker a strand, positive or negative, was chosen at
random.

2. Then, anchor sequences a1 and a2, and the motif m associated
with that strand were selected.

3. One random base was selected within both a1 and a2, changing
these bases to a random nucleotide. Note that there is a �1/4
probability of the base remaining the same with this operation.

4. Using the marker lengths from the configuration file from [19], a
known distance between a1 and a2 was selected at random, and
a string S of nucleotides of that length were generated. Then the
motif m was overlaid onto S.

5. Last, two strings, s1 and s2, of nucleotides of length [0,50] were
generated and used the concatenation of: s1, a1, S, a2, s2 as the
DNA sequence of our in silico read.

Random herein means a uniform distribution as generated by
the Perl function rand. To avoid the possibility of a read being
erroneously associated with the wrong STR, strings S, s1, and s2
were formed out of the least-frequent nucleotide in the
configuration file (“G”). This algorithm guaranteed that a single
in silico read would be associated with exactly one STR, simplifying
interpretation of the result. Of note, due to a tandem duplication,
the 50 anchor for the DYS389II locus is expected to be found twice.
Thus, the in silico strategy was extended to include an additional
anchor (a1) and random string (s1) for this locus. STRait Razor v3.0
was run on each read individually, thus assessing if the correct STR
and only the correct STR is found for a given read.

2.5. Timing, concordance and bias experiments

STRait Razor v3.0 was benchmarked against STRait Razor v2s
using the default maximum Hamming distance of 1 for both
programs. Benchmarks were performed on the same 59 STRs (plus
Amelogenin) described in [19]. STRait Razor v2s runtimes were
conducted solely on the runtimes of the perl script, and not of the
Excel workbook. For a reference, BWA [9] also was used to map
reads to the hg38 genome using the mem mapping algorithm set to
the default parameters. Execution times were measured using the
bash built-in utility time, with the mean and standard deviation
run-times computed over 10 independent replicates. Run-times
and concordance were compared for a single sample (C96) with the
highest read-depth (530,144 351 bp reads) amongst the samples
from [19].

Concordance was further investigated with an additional 9
arbitrarily chosen individuals from [19] and was assessed using
three summary statistics. The first statistic, c, simply counts the
number of reads associated with a given haplotype in STRait Razor
v3.0 and STRait Razor v2s. The second statistic, d, counts the
number of reads that were associated with a STR for one version of
STRait Razor and not the other. For example, if a locus has
haplotypes X, Y, and Z, and v2s found each haplotype 5, 3, and 1
times and v3.0 found each haplotype 7, 4 and 0 times, the
corresponding d values are 3 (2 + 1 + 0) and 1 (0 + 0 + 1) for v3.0 and
v2s, respectively. The third summary statistic, a, counts the



Fig. 3. Heatmap of locus coverage and haplotype differences in 10 individuals across the autosomes and X chromosome. We tabulated the total number of reads associated
with a given locus (columns, using STRait Razor v3.0) across individuals (rows), with that count (in 1000s) shown in text. The difference in haplotype counts (d) estimated by
STRait Razor v2s vs STRait Razor v3.0, estimated solely in the case where v2s found more of a given haplotype than STRait Razor v3.0, is shown in greyscale.

22 A.E. Woerner et al. / Forensic Science International: Genetics 30 (2017) 18–23
number of “atypical” haplotype lengths found by v3.0. In particular,
a is the number of reads whose corresponding haplotypes were
found by v3.0 and whose haplotype length was not encoded in the
configuration file of [19] and thus were excluded from the
reporting process of v2s.

Consistency was estimated with respect to read mapping with
BWA. In particular, reads were mapped to the HG38 reference
genome using BWA-MEM, and samtools view and samtools flagstat
were used to extract reads that overlapped the loci. The accuracy of
STRait Razor v2s has been reported previously [3,6], and as such
the concordance of STRait Razor v3.0 with STRait Razor v2s serves
as an additional assessment of accuracy.

3. Results

3.1. In silico precision

For the in silico experiment 6 million synthetic reads were
generated; 100,000 reads for each of the 60 markers (includes
DYS461). Each read was run through STRait Razor v3.0 individually,
and the associated STR was recorded. STRait Razor v3.0 reported
each of the 100,000 records correctly for every STR, implying 100%
precision and accuracy for these loci. Running all 6 million reads
collectively yielded the correct number of STRs recovered for all
STRs, and this result held when STRait Razor v3.0 was run with and
without multi-threading. Taken together, STRait Razor v3.0 does
not appear to miss any loci when they conform to the specifications
detailed in the configuration file, and the results indicate that there
are no serious bugs in the new software version.

3.2. Processing times

As seen in Fig. 2 (note log scale), STRait Razor v3.0 is
considerably faster than its predecessor, with single-core process-
ing times decreasing by �660�, going from an average of �2 h
(7627 s) to 11 s for a single high-coverage sample. For a reference,
read mapping with BWA took �9 min (557 s) on average on a single
core. Both STRait Razor v3.0 and STRait Razor v2s employ
multicore processing techniques, and as measured by the slopes
in Fig. 2, both versions appear to scale similarly though there may
be more speed gains with increasing core count for the version of
STRait Razor v2s and with BWA than for STRait Razor v3.0. These
speed gains may be a byproduct of reading large fastq files, an IO
intensive activity that places a lower bound on the (best-case)
overall processing time of STRait Razor v3.0.
3.3. STRait Concordance

The consistency of STRait Razor v3.0 was compared to that of
STRait Razor v2s for sample C96. Of the 530,144 reads evaluated,
the sequence of 252,139 and 252,470 STRs were inferred by STRait
Razor v3.0 and Strait Razor v2s, respectively. Read mapping with
BWA yielded 250,218 reads which overlapped the loci, suggesting
that �50% of read-recovery is expected with the ForenSeqTM panel.
This difference likely reflects the additional SNPs also targeted by
this panel. The number of reads associated with each STR were
highly consistent between two versions of STRait Razor, yielding a
Pearson correlation coefficient >99.99% (see also Table 1).

To test if the haplotype identities remained the same between
STRait Razor v2s and v3.0 the c, d and a statistics were computed in
sample C96 (Table 1), and in C96 and 9 other individuals (Fig. 3) on
the autosomes and the X chromosome. Some differences are
expected between these programs; while STRait Razor v2s had no
explicit rules for tie-breaking when multiple matching anchor
sequences are found, STRait Razor v3.0 has a conservative set of
rules for extracting sequences. Namely, in STRait Razor v3.0
sequences are extracted only if they can unambiguously be
associated with a STR, while with STRait Razor v2s if multiple
matches are found then ties are broken arbitrarily. Further, STRait
Razor v3.0 allows for the inference of the number of repeats in the
STR directly based on the sequence length, while v2s required that
the sequence length match a priori expectations. Taken together,
STRait Razor v3.0 may report less reads at a locus because of its tie-
breaking rules, or it may report more loci because of its lack of a
priori expectations on read lengths.

The a statistic computes the number of alleles of “atypical”
length, and outside of the a priori expectations employed by [19],
parsing out some of these reporting differences. The per-locus a
statistic across the autosomes and X chromosome is <5 in all
individuals, which suggests that these a priori expectations likely
have little impact on the downstream analyses of [19]. However,
even if not apparent in this study, a priori assumptions on allele
size have the potential to induce allelic dropout, an issue that may
become relevant in populations with small effective population
size (e.g., isolates), with a large degree of population structure, or if
tested on extremely large sample sizes.

In practice, most of the differences seen between v2s and v3.0
are clustered in the duplicated loci DYS389I, DYS389II, and
DYF387S1 (Table 1). For the DYS389II locus, STRait Razor v3.0
requires the 50 anchor to occur exactly twice in the sequence; if it is
present only once, as may become the case if the sequence is
sufficiently degraded, it becomes consistent with the DYS389I



A.E. Woerner et al. / Forensic Science International: Genetics 30 (2017) 18–23 23
locus. The locus DYF387S1, on the other hand, has a 30 anchor that
contains low-complexity sequence (its prefix is A4T1A7), which
increases the probability of a second anchor match occurring
simply by chance and thus slightly reducing the frequency of this
marker in STRait Razor v3.0. With respect to haplotype differences
(d), the vast majority of loci show little to no differences in the
haplotype counts (grayscale, Fig. 3), with only 8 of the 350 cells in
Fig. 3 having a d > 9. Further, even when differences are found, they
are small with respect to the overall coverage for a locus (text,
Fig. 3). The one exception may be the locus DXS8378, which
appears to show more haplotypes being omitted by STRait Razor
v3.0 than by v2s, especially in sample 6073. Manual inspection of
this locus in this sample shows that the 30 anchor is apparently
repeated in some reads; as stated above, this potential duplication
would cause STRait Razor v3.0 to drop the haplotype as the
haplotype identity becomes ambiguous, while in this case STRait
Razor v2s chooses the shorter of the two alleles. Overall, very few
haplotypes are missed by v2s and found by STRait Razor v3.0, with
a maximum of 4 seen across autosomal and X-linked loci in these
samples (data not shown).

It should be noted that the allowing a maximum Hamming
distance of one may lead to allele dropout in a sample containing
multiple mismatches in an anchor. When converting configuration
files from v2s to v3.0, two anchors were found to contain phased
SNPs in at least one individual (n = 2504) from the 1000 Genome
Project (Phase 3) [22]. While the configuration files have been
modified in both v2s and v3.0 to account for these loci, other low-
frequency variants may exist in the greater population(s) and our
and other software may experience at some level bioinformatic
“dropout”.

5. Conclusions

STRait Razor v3.0 provides a marked improvement of the allele
identification strategy employed by its previous versions. STRait
Razor v3.0 is fast, in part owing to its development in a compiled
programming language (C++) and in part to an indexing strategy
that is tailored for fast approximate search of anchor sequences.
STRait Razor v3.0 is multithreaded, allowing it to exploit multicore
CPUs. Further, it no longer requires regular files and instead can use
the standard input stream, allowing it to process compressed file
formats and generally function in analysis pipelines. STRait Razor
v3.0 also has the ability to selectively filter loci by type (e.g., one
can attempt to find only autosomal loci or any other user-defined
type). The tool can optionally place haplotypes onto the positive
strand, and low-frequency haplotypes can be excluded from the
output, thus simplifying the reporting process. STRait Razor v3.0
also uses a conservative set of requirements used to resolve
ambiguous haplotype identities, and it has the ability to compute
the length-based nomenclature of STRs without prior expectations
on haplotype lengths.

STRait Razor v3.0 is open source and freely available at https://
github.com/Ahhgust/STRaitRazor and at https://www.unthsc.edu/
graduate-school-of-biomedical-sciences/molecular-and-medical-
genetics/laboratory-faculty-and-staff/strait-razor, along with
standard configuration files that will enable it to be used on a
variety of MPS systems. Comments and findings that could
improve the performance of STRait Razor v3.0 are welcome and
encouraged.

Funding

This work was supported in part by award no. 2015-DN-BX-
K067, awarded by the National Institute of Justice, Office of Justice
Programs, U.S. Department of Justice.
Conflict of interest

None.

Acknowledgements

The opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not
necessarily reflect those of the U.S. Department of Justice. The
authors would like to thank the two anonymous reviewers for their
feedback and suggestions to earlier versions of this manuscript.

References

[1] S.L. Fordyce, M.C. Ávila-Arcos, E. Rockenbauer, C. Børsting, R. Frank-Hansen, F.T.
Petersen, E. Willerslev, A.J. Hansen, N. Morling, T.P. Gilbert, High-throughput
sequencing of core STR loci for forensic genetic investigations using the Roche
Genome Sequencer FLX platform, Biotechniques 51 (2011) 127–133, doi:
http://dx.doi.org/10.2144/000113721.

[2] M. Gymrek, D. Golan, S. Rosset, Y. Erlich, lobSTR: A short tandem repeat profiler
for personal genomes lobSTR: A short tandem repeat profiler for personal
genomes, Genome Res. (2012) 1154–1162, doi:http://dx.doi.org/10.1101/
gr.135780.111.

[3] D.H. Warshauer, D. Lin, K. Hari, R. Jain, C. Davis, B. Larue, J.L. King, B. Budowle,
STRait Razor A length-based forensic STR allele-calling tool for use with
second generation sequencing data, Forensic Sci. Int. Genet. 7 (2013) 409–417,
doi:http://dx.doi.org/10.1016/j.fsigen.2013.04.005.

[4] S.L. Friis, A. Buchard, E. Rockenbauer, C. Børsting, N. Morling, Introduction of
the Python script STRinNGS for analysis of STR regions in FASTQ or BAM files
and expansion of the Danish STR sequence database to 11 STRs, Forensic Sci.
Int. Genet. 21 (2016) 68–75, doi:http://dx.doi.org/10.1016/j.fsigen.2015.12.006.

[5] S.Y. Anvar, K.J. Van Der Gaag, J.W.F. Van Der Heijden, Veltrop M.H.A.M, Vossen
R.H.A.M, R.H. De Leeuw, C. Breukel, H.P.J. Buermans, J.S. Verbeek, P. De Knijff, J.
T. Den Dunnen, J.F.J. Laros, TSSV: A tool for characterization of complex allelic
variants in pure and mixed genomes, Bioinformatics 30 (2014) 1651–1659, doi:
http://dx.doi.org/10.1093/bioinformatics/btu068.

[6] D.H. Warshauer, J.L. King, B. Budowle, STRait razor v2.0: the improved STR
allele identification tool-Razor, Forensic Sci. Int. Genet. 14 (2015) 182–186, doi:
http://dx.doi.org/10.1016/j.fsigen.2014.10.011.

[7] J.L. King, F.R. Wendt, J. Sun, B. Budowle, STRait Razor v2s: Advancing sequence-
based STR allele reporting and beyond to other marker systems, Forensic Sci.
Int. Genet. 29 (2017) 21–28, doi:http://dx.doi.org/10.1016/j.fsigen.2017.03.013.

[8] G. Navarro, A guided tour to approximate string matching 1 introduction, ACM,
Comput. Surv. 33 (2001) 31–88, doi:http://dx.doi.org/10.1145/375360.375365.

[9] H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler
transform, Bioinformatics 25 (2009) 1754–1760, doi:http://dx.doi.org/
10.1093/bioinformatics/btp324.

[10] B. Langmead, S.L. Salzberg, Fast gapped-read alignment with bowtie 2, Nat.
Methods 9 (2012) 357–359, doi:http://dx.doi.org/10.1038/nmeth.1923.

[11] M. Burrows, D. Wheeler, A block-sorting lossless data compression algorithm,
SRC Res. Rep. 124 (1994).

[12] U. Manber, G. Myers, Suffix arrays a new method for on-Line string searches,
SIAM J. Comput. 22 (1993) 935–948.

[13] S. Wu, U. Mamber, Agrep – a fast approximate pattern matching tool, Proc.
Winter 1992 USENIX Conf., San Fr. USA. Berkeley, 1992, pp. 153–162.

[14] V. Laurikari, TRE. The free and portable approximate regex matching library,
(n.d.). http://laurikari.net/tre.

[15] G. Highnam, C. Franck, A. Martin, C. Stephens, A. Puthige, D. Mittelman,
Accurate human microsatellite genotypes from high-throughput
resequencing data using informed error profiles, Nucleic Acids Res. 41 (2013)
1–7, doi:http://dx.doi.org/10.1093/nar/gks981.

[16] R. De La Briandais, File Searching Using Variable Length Keys, ACM, 1959, pp.
295–298.

[17] C. Jobling, Mark A. Tyler-Smith, Fathers and sons: the Y chromosome and
human evolution, Trends Genet. 11 (1995) 449–456.

[18] L. Kayser, Caglia Manfred, A. Fretwell, N. Gehrig, C. Graziosi, G. Heidorn, F.
Herrmann, S. Herzog, B. Hidding, M. Honda, K. Jobling, M. Krawczak, M. Leim,
K. Meuser, S. Meyer, E. Oesterreich, W. Pandya, A. Parson, W. Penacino, G.
Perez-Leza, Evaluation of Y-chromosomal STRs: a multicenter study, Int. J.
Legal Med. 110 (1997) 125–133.

[19] N.M.M. Novroski, J.L. King, J.D. Churchill, L.H. Seah, B. Budowle,
Characterization of genetic sequence variation of 58 STR loci in four major
population groups, Forensic Sci. Int. Genet. 25 (2016) 214–226, doi:http://dx.
doi.org/10.1016/j.fsigen.2016.09.007.

[20] R. Core Team R: A Language and Environment for Statistical Computing,
https://www.R-Project.org/. (2016). http://www.r-project.org/.

[21] H. Wickham, ggplot2: Elegant Graphics for Data Analysis, 2009. http://ggplot2.
org.

[22] 1000 Genomes Project Consortium, A global reference for human genetic
variation, Nature. 526 (2015) 68–74. 10.1038/nature15393.

https://github.com/Ahhgust/STRaitRazor
https://github.com/Ahhgust/STRaitRazor
https://www.unthsc.edu/graduate-school-of-biomedical-sciences/molecular-and-medical-genetics/laboratory-faculty-and-staff/strait-razor
https://www.unthsc.edu/graduate-school-of-biomedical-sciences/molecular-and-medical-genetics/laboratory-faculty-and-staff/strait-razor
https://www.unthsc.edu/graduate-school-of-biomedical-sciences/molecular-and-medical-genetics/laboratory-faculty-and-staff/strait-razor
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0005
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0005
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0005
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0005
http://dx.doi.org/10.2144/000113721
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0010
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0010
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0010
http://dx.doi.org/10.1101/gr.135780.111
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0015
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0015
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0015
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0015
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0020
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0020
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0020
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0020
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0025
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0025
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0025
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0025
http://dx.doi.org/10.1093/bioinformatics/btu068
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0030
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0030
http://dx.doi.org/10.1016/j.fsigen.2014.10.011
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0035
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0035
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0035
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0040
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0040
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0045
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0045
http://dx.doi.org/10.1093/bioinformatics/btp324
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0050
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0050
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0055
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0055
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0060
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0060
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0065
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0065
http://laurikari.net/tre
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0075
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0075
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0075
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0075
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0080
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0080
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0085
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0085
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0090
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0090
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0090
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0090
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0090
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0095
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0095
http://refhub.elsevier.com/S1872-4973(17)30115-1/sbref0095
http://dx.doi.org/10.1016/j.fsigen.2016.09.007
https://www.R-Project.org/
http://www.r-project.org/
http://ggplot2.org
http://ggplot2.org

	Fast STR allele identification with STRait Razor 3.0
	1 Introduction
	2 Materials and methods
	2.1 Algorithm description and implementation
	2.2 Locus specifications
	2.3 Samples, library preparation and sequencing
	2.4 In silico reads
	2.5 Timing, concordance and bias experiments

	3 Results
	3.1 In silico precision
	3.2 Processing times
	3.3 STRait Concordance

	5 Conclusions
	Funding
	Conflict of interest
	Acknowledgements
	References


