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Abstract The use of bi-allelicmarkers such as retrotransposable
element insertion polymorphisms or Innuls (for insertion/null)
can overcome some limitations of short tandem repeat (STR) loci
in typing forensic biological evidence. This study investigated
the efficiency of the InnoTyper® 21 Innul markers in an urban
admixed population sample in Rio de Janeiro (n = 40) and one
highly compromised sample collected as evidence by the Rio de
Janeiro police. No significant departures from Hardy-Weinberg
equilibrium were detected after the Bonferroni correction
(α′ ≈ 0.05/20, p < 0.0025), and no significant linkage disequilib-
rium was observed between markers. Assuming loci indepen-
dence, the cumulative random match probability (RMP) was
2.3 × 10−8. A lower mean Fis value was obtained for this sample
population compared with those of three North American popu-
lations (African-American, Southwest Hispanic, US Caucasian).
Principal component analysis with the three North American

populations and one from 21 East Asian population showed that
African Americans segregated as an independent group while
US Caucasian, Southwest Hispanic, East Asian, and Rio de
Janeiro populations are in a single large heterogeneous group.
Also, a full Innuls profile was produced from an evidence sam-
ple, despite the DNA being highly degraded. In conclusion, this
system is a useful complement to standard STR kits.
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Short tandem repeat (STR) loci are the primary markers used
to characterize forensic biological evidence and are core
markers for all national DNA databases. Despite their appeal-
ing features, the amplicon size of many STR loci is greater
than 200 bp, and these large loci are not ideal for analysis of
highly degraded and low template DNA samples [1]. Also,
STR loci have relatively high mutation rates that may compli-
cate kinship analyses. An alternative to overcome the limita-
tions of STRs is the use of bi-allelic markers, such as single
nucleotide polymorphisms (SNPs) and insertion/deletion
(InDels) polymorphisms. These markers can be detected in
shorter amplicons and have low mutation rates. Indeed,
Kayser and de Knijff [2] point out that SNPs and InDels are
alternative markers that perform substantially better than
STRs for the analysis of degraded DNA samples. A type of
marker similar in nature to InDels is retrotransposable element
(RE) insertion polymorphisms or Innuls (for insertion/null)
[3]. The Innuls polymorphism consists of long interspersed
nuclear elements (LINEs) and short interspersed nuclear ele-
ments (SINEs or Alu insertion) [3]. Innuls are highly abundant
in the human genome and extremely stable once inserted
[4–9].
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Previous attempts to use Alu insertions for identity testing
exploited the size difference between insertion and null alleles
by amplifying the entire region with the same forward and
reverse primers positioned in the flanking region [10]. The
insertion allele would be 200–400 bp larger than the null allele
and could be detected by electrophoresis based on size differ-
ences. This approach can be useful for paternity testing and
some population studies, where DNA is not limited or com-
promised. However, the large size difference between
amplicons of the no-insertion (null) and insertion alleles will
impact amplification efficiency and increase allele dropout
during the PCR, which is a limitation for forensic samples
(i.e., preferential amplification favoring the smaller allele
amplicon and degradation resulting possibly in dropout of
the insertion allele). Thus, the use of REs as a multiplexed
marker system had not been embraced for the analysis of
forensic samples [11]. The InnoTyper® 21 system was de-
signed to detect the presence or absence of specific Alu inser-
tions by positioning primers at the junction of the insertion site
to overcome the allele size differences. This strategy generates
small amplicons of almost the same size and can type highly
degraded DNA samples [10–12].

Validation and population studies have been conducted in
only four distinct population groups [13]. However, the per-
formance of this panel of Innuls needs to be evaluated in
additional populations for better use of these markers for hu-
man identification.

In this study, the efficiency of the InnoTyper® 21 markers
was tested in an urban admixed population sample in Rio de
Janeiro and was compared with that of North America popula-
tions and one from East Asia to enhance information to support
the worldwide application of this system. In addition, the ability
to obtain a full Innuls profile was compared with that of STR
typing of a highly compromised biological evidence.

An admixed sample from Rio de Janeiro (n = 40) was typed
with a panel of 20 Innul markers (Supplementary Material and
Methods), plus the amelogenin locus (InnoTyper® 21). A sam-
ple electropherogram of this multiplex is shown in
Supplementary Figure S1. The peak high ratio (PHR), one of
the parameters needed for mixture analyses, was taken from
average heterozygous ratios of each marker across all samples.
Values of PHR varied from 0.723 to 0.869, with a mean value
of 0.798 ± 0.147, which is comparable to STR systems. To
estimate DNA frequencies with 95% of confidence, we calcu-
lated the minimum allele frequency of 0.045 for a bi-allelic
system according to Budowle et al. [14]. Also, according to
Chakraborty [15], a population sample size of 36 would be
more than adequate to detect alleles and estimate allele frequen-
cies for a bi-allelic marker (at p = 0.05 andα = 0.05). All alleles,
on all loci, showed frequencies well above that minimum value,
even considering the standard error (Supplementary Table S1).
No departures from HWE were detected for all Innul markers
except for SB19.12 (Supplementary Table S1). This finding is

consistent with departures expected by chance, after the
Bonferroni correction (α′ ≈ 0.05/20, p < 0.0025).

The significant linkage disequilibrium (LD) between mark-
er pairs, measured asR2, was assessed using Fisher’s exact test
with 10,000 permutations [16]. For the InnoTyper® 21
markers, there were 190 possible pairwise comparisons. A
total of six pairs had a detectable LD at the 0.025
(α″ ≈ 0.05/2, p < 0.025) level in the Rio de Janeiro sample
population (Supplementary Table S2). This proportion of de-
tectable LD was less than expected by chance (~9 to 10 pairs).
The data support the use of the product rule to calculate the
combined genotype frequencies.

The power of an Innuls panel is related to the number of
markers with a random match probability (RMP) near or be-
low 0.4 (considering the ideal value of p = q = 0.5, RMP is
0.375). For all markers, the RMP varied between 0.36 and
0.52 in the population tested (Supplementary Table S1).
Nine Innuls are above the threshold (i.e., RMP of 0.4.)
(Supplementary Figure S2). The cumulative RMP was
2.3 × 10−8 for the Rio de Janeiro population, assuming loci
independence and no substructure effect. This value is similar
to that reported for the North American population groups
[13].

The Rio de Janeiro population was compared with three
North American populations: African-American (n = 207);
Southwest Hispanic (n = 40); and US Caucasian (n = 205) and
one from East Asia (n = 44) [13]. Wright’s Fst was estimated to
assess population substructure [17]. The overall Fst was 0.0516.
For the five populations, the Fst pairwise values are provided for
the populations in Supplementary Table S3 and this parameter
was used to generate principal component analysis (PCA) which
showed a comparable genetic distance among all five population
samples (Supplementary Figure S3). The African-Americans
segregated as an independent group. The US Caucasian,
Southwest Hispanic, East Asian, and the Rio de Janeiro popula-
tions are in a single large heterogeneous group, indicating that the
markers constitute a suitable system for human identification
(HID) to be used with distinct ethnic groups and, also, with
admixed populations.

To evaluate population differentiation due to substructure,
Wright’s Fis was estimated. The Fis value was −0.010622
(Supplementary Table S1) which is lower than that reported
for the North American sample populations [13]. Also, indi-
vidual ancestry proportions were estimated with Structure
v2.3.4. The composition of those populations was assumed
to be at least two (K = 2), since the estimated natural logarithm
probability LnP was found to be higher (Supplementary
Figure S4). The African-American (AFA) group is different
from all others, from K = 2 to 7, and the USC, HIS, ASI, and
RIO showed the same pattern of substructure (Supplementary
Figure S5). This result suggests that those markers can reveal
different population compositions between African and non-
African.
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Using the Quantifiler Trio, the DNA degradation index was
equal to 204, and the sample was analyzed with InnoTyper® 21
and PowerPlex® Fusion. In addition, the alleged mother was
analyzed as a reference sample for body identification purposes.
Supplementary Figure S6 shows the STR profile with only eight
markers, all below 180 bp, being fully or partially successfully
typed, using a threshold of 150 rfu. This highly degraded DNA
sample produced a full Innul profile (Supplementary Figure S7),
although there was some allelic imbalance and noise, validation
studies performed previously had optimized the PCR to reduce
allelic dropout [13]. The likelihood ratio (LR) of the STR system
results was 73.7, with a posterior probability (PP) of 98.7%. The
Innuls system provided a LR = 49.4 (PP = 98%). Neither system
provided sufficient discrimination to obtain an acceptable con-
clusion, but the combined LR (assuming loci independence) was
3644, with PP = 99.97%, which strongly supports the genetic
relationship. This outcome indicates that Innuls are a useful set of
markers and can complement conventional STRs, especially for
challenged biological evidence such as those involving the iden-
tification of human remains, hair shafts, paraffin-embedded tis-
sues, and other sample types [18–20].

The InnoTyper® 21 system is a highly discriminating nu-
clear DNA detection system for human identification. Since
the InnoTyper® 21 system was designed to generate small
product fragments (between 63 and 123 bp), degraded sam-
ples may yield more typing results with this system than with
STR loci. Brown et al. [13] observed that InnoTyper® 21
recovered more alleles than MiniFiler on compromised sam-
ples. Thus, the InnoTyper® 21 system is well-suited for kin-
ship analysis of degraded human remains and genetic studies
in admixed populations.
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