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A B S T R A C T

The pharmacogene, CYP2D6, is commonly used to infer metabolizer phenotype of many marketed drugs and
endogenous toxins in ante- and post-mortem patients but only represents the efficiency of phase 1 metabolism.
Downstream metabolic enzymes encoded by UGT2B7, ABCB1, OPRM1, and COMT also have been implicated in
variable individual response to drugs due to their activity at different stages of the tramadol ADME (absorption,
distribution, metabolism, and excretion) process. While commonly studied as single genes using targeted gen-
otyping approaches, a more comprehensive tramadol metabolism profile has not been evaluated. 1000 Genomes
Project data for UGT2B7, ABCB1, OPRM1, and COMT were used to characterize full-gene haplotypes and their
effect on protein function using in-house excel-based workbooks, PopART, and TreeView. Population genetic
summary statistics and intergenic analyses associated these haplotypes with full-gene CYP2D6-inferred meta-
bolizer phenotype. The findings suggest that UGT2B7, ABCB1, OPRM1, and COMT may contribute to predicted
metabolizer phenotype as opposed to relying solely on CYP2D6.

1. Introduction

The cytochrome p450 family 2, subfamily D, polypeptide 6
(CYP2D6) enzyme is responsible for phase I metabolism of approxi-
mately 30% of marketed drugs and endogenous toxins [1,2]. CYP2D6 is
a highly variable pharmacogene with well documented allele distribu-
tions that vary by demography [3–6]. Constellations of individual
single nucleotide (SNPs) or insertion/deletion (INDELs) polymorphisms
in CYP2D6 define star (*) alleles (i.e. a haplotype [operationally defined
by a set of SNPs]) which may be used to predict the metabolizer phe-
notype (e.g. poor [PM], intermediate [IM], extensive/normal [EM/NM]
and ultrarapid [UM]) of an individual using their CYP2D6 diplotype
(i.e., combination of two CYP2D6 * alleles) information and associated
activity scores. These data have demonstrated value for guiding in-
dividualized prescription medication practices and even post-mortem
investigations [7–10].

The CYP2D6-inferred metabolizer phenotype describes only one
phase of the tramadol (T) ADME (absorption, distribution, metabolism,
and excretion) and response process and does not explain all genotypic
contribution of an individual’s phenotypic expression [11]. Numerous

polymorphisms in the downstream metabolic enzymes uridine dipho-
sphate glucuronosyltransferase, family 1, polypeptide B7 (UGT2B7),
adenosine triphosphate (ATP) binding cassette, subfamily B, number 1
(ABCB1), opioid receptor mu 1 (OPRM1), and catechol-O-methyl-
transferase (COMT) also have been implicated in idiosyncratic response
to drugs. These ADME proteins are less well characterized and typically
are interrogated in single-gene studies that associate relatively few
SNPs/INDELs to rate of drug metabolism and/or enzyme activity
[12–17]. It has been demonstrated that combinatorial pharmacogenetic
profiles (i.e., data from multiple genes) improved patient outcomes in
response to antidepressants [18,19] and opiates [20]. Therefore, a
higher confidence in predicting a metabolizer phenotype may be rea-
lized if information from multiple enzymes in an ADME pathway, such
as CYP2D6, UGT2B7, ABCB1, OPRM1, and COMT, are included in the
analysis. For example, a CYP2D6*4/CYP2D6*4 homozygote is con-
sidered a PM and may be prescribed a higher dose of pro-drug (e.g., T)
to reach the therapeutic window. However, that same individual may
harbor an ABCB1 diplotype which confers decreased efflux of O-des-
methyltramadol (M1, the primary active metabolite of T) across the
blood brain barrier, enabling a relatively large concentration of M1 to
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reach OPRM1 and stimulate analgesia propagation. Ultimately, a pa-
tient with this pair of diplotypes at CYP2D6 and ABCB1 should ex-
perience the desired, and safe, degree of pain relief, but relying solely
on CYP2D6 information for this patient would support increasing the
tramadol dose which potentially could cause hyperalgesia.

While combinatorial studies have been performed, they rely on
targeted genotyping approaches to interrogate a priori SNPs and/or
INDELs [13,15,20–24]. Consequently, novel polymorphism(s) cannot
be identified that refine estimates of enzyme activity [25]. Massively
parallel sequencing (MPS) of the full gene region increases the potential
to discover polymorphisms that are currently excluded from phenotype
predictions [26].

Herein, the SNP and INDEL variant effect prediction data presented
by Wendt et al. [27] are expanded upon using the phased data of the
1000 Genomes Project [28]. Full-gene haplotypes of UGT2B7, ABCB1,
OPRM1, and COMT were characterized in self-reported healthy in-
dividuals. When compared to CYP2D6-predicted metabolizer pheno-
type for the same individuals [25], it was demonstrated that NMs by
CYP2D6 genotyping may possess poorly active downstream metabolic
enzymes. Logistic regression suggests that phenotype predictions using
CYP2D6-inferences alone do not explain all phenotypic variability as
there may be contribution from polymorphisms in UGT2B7, ABCB1,
OPRM1, and COMT.

2. Materials and methods

Polymorphisms in the UGT2B7, ABCB1, OPRM1, and COMT gene
regions, including introns, exons, 5′ and 3′ untranslated regions (UTRs),
and promoters, were downloaded from Phase 3 of the 1000 Genomes
Project and analyzed individually in 5 super- and 26 sub-populations
(Table S1) according to Wendt et al. [27]. Haplotypes for each gene
were produced according to Table 1 and individual haplotypes are
listed in Table S2. Certain polymorphisms characterized were removed
from haplotype formation to simplify downstream analyses but capture
meaningful levels of variation within each gene. Those excluded var-
iants differ for each gene based on gene size, number of polymorphic
sites within each gene, and the consensus variant effect prediction of
each polymorphism. In general, polymorphisms that were not scored by
Sort Intolerant From Tolerant (SIFT) [34–39], Polymorphisms Pheno-
typing v2 (PolyPhen-v2) [34,40,41], Protein Variant Effect Analyzer
(PROVEAN) [42–44], or Human Splicing Finder (HSF) [45], were re-
moved. Private mutations (SNPs or INDELs observed once in the 1000
Genomes Project) were included/excluded on a gene-by-gene basis.
ABCB1 was divided into four haplotype blocks based on Sai et al.
[30,31]. Herein, haplotype block ABCB1-Block-1 has been extended to
include untranslated exon 1 (Fig. 1).

Using in-house Excel-based workbooks, haplotypes were aligned to
the hg19 and hg38 reference genomes. Haplotypes were named with
the following nomenclature format: reference sequence (genome
name)-community recognized star allele (if known)-list of poly-
morphism rs numbers, if known, and the base at each position. Note
that within text haplotypes were referenced using numeric identifiers
relative to their frequency in the global population of all 2504 1000
Genomes Project individuals (Table S2).

Population genetic summary statistics for five super- and 26 sub-
populations, including haplotype and diplotype frequencies (analogous
to allele and genotype frequencies), observed (Ho) and expected (He)
heterozygosities, pairwise genetic distances, and tests for detection of
departures from Hardy Weinberg Equilibrium (HWE) and linkage dis-
equilibrium were performed using Genetic Data Analysis (GDA) [46]
and the RStudio® package ggplot2 [47]. TreeView Version 1.6.6 Build
7601 [48,49] was used to create phylogenetic trees; haplotype network
analyses were performed using Population Analysis with Reticulate
Trees (PopART) using the ancestral parsimony setting [50].

Enzyme activity was predicted using commonly typed and pre-
viously described polymorphisms for each gene [13,17,29–31,51–53]. Ta
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Fig. 1. ABCB1 haplotype blocks. Image modified from Integrative Genomics Viewer [32,33] indicated chromosome 7 coordinates are relative to the hg19 reference genome.

Fig. 2. Haplotype frequencies for UGT2B7 (A), ABCB1-Block 3 (B), ABCB1-Block 2 (C), ABCB1-Block 1 (D), ABCB1-Block -1 (E), OPRM1 (F), and COMT (G) in five super-populations
(African [AFR; circles], Admixed American [AMR; horizontal lines], East Asian [EAS; squares], European [EUR; diamonds], and South Asian [SAS; triangles]).
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Due to lack of empirical data for each polymorphism, additional da-
maging or most likely damaging polymorphisms in a gene were as-
sumed to completely eliminate enzyme function. Logistic regression
was used to explore possible relationships between the well-char-
acterized CYP2D6-inferred metabolizer phenotype, represented as an
activity score (a qualitative measure of phenotype derived from the
activity conferred by each * allele an individual carries [54]) and the
predicted activity of UGT2B7, ABCB1, OPRM1, and COMT. These data
were then used to interpret the potential utility of a combinatorial
pharmacogenetic profile.

3. Results and discussion

3.1. UGT2B7, ABCB1, OPRM1, and COMT

A total of 641, 98, 754, 208, 9, 527, and 377 string sequences were
observed for UGT2B7, ABCB1-Block 3, ABCB1-Block 2, ABCB1-Block 1,
ABCB1-Block -1, OPRM1, and COMT, respectively (Table 1 and Fig. 2).
ABCB1-Block 3 haplotype 1, ABCB1-Block 2 haplotype 191, ABCB1-
Block 1 haplotype 8, ABCB1-Block -1 haplotype 3, and COMT haplotype
1, respectively, were identical to the hg19/hg38 reference genomes. No
UGT2B7 and OPRM1 haplotypes were identical to the hg19/hg38 re-
ference sequences. A majority of haplotypes were observed once in the
global population so the average global frequency of haplotypes for
each gene was quite low (0.00156 ± 0.00690 for UGT2B7,
0.0102 ± 0.0566 for ABCB1-Block 3, 0.00133 ± 0.00699 for ABCB1-
Block 2, 0.00481 ± 0.0243 for ABCB1-Block 1, 0.111 ± 0.222 for
ABCB1-Block -1, 0.00190 ± 0.00873 for OPRM1, and
0.00265 ± 0.00900 for COMT). UGT2B7 haplotypes 1–20, ABCB1-
Block 3 haplotypes 1–7, ABCB1-Block 2 haplotypes 1–17, ABCB1-Block 1
haplotypes 1–16, ABCB1-Block -1 haplotypes 1–3, OPRM1 haplotypes
1–18, and COMT haplotypes 1–21 had global alleles frequencies ≥ 1%
(Fig. 2), with average frequencies of 0.0284 ± 0.0278 for UGT2B7,
0.127 ± 0.186 for ABCB1-Block 3, 0.0293 ± 0.0371 for ABCB1-Block

2, 0.0516 ± 0.0748 for ABCB1-Block 1, 0.331 ± 0.229 for ABCB1-
Block -1, 0.0371 ± 0.0311 for OPRM1, and 0.0298 ± 0.0255 for
COMT.

Variant compositions for the most common haplotypes of each gene
and for all haplotypes are displayed in Figs. 3 and S1, respectively.
Empirical data are not present for the large number of haplotypes ob-
served so for the descriptive purposes of this work, the presence of one
damaging, or most likely damaging [27,34–45], polymorphism in the
haplotype is considered sufficient to decrease enzyme function. The
average number of polymorphisms per haplotype was 59.8 ± 27.6 for
UGT2B7, 3.56 ± 1.01 for ABCB1-Block -1, 4.50 ± 1.97 for ABCB1-
Block 1, 16.5 ± 7.00 for ABCB1-Block 2, 3.08 ± 1.21 for ABCB1-Block
3, 11.3 ± 2.62 for OPRM1, and 4.89 ± 1.99 for COMT. Due to limited
studies of the polymorphic nature of these four genes and inclusion of
additional interrogated regions, none of the observed sequences herein
were identical to previously reported star (*) alleles (a haplotype of
polymorphisms along the length of the gene region) for UGT2B7,
ABCB1, OPRM1, and COMT. It should be noted that a substantial
number of SNPs/INDELs found in each haplotype (Figs. 3 and S1) are
found in intronic or 5′ and 3′ untranslated regions and may have no
individual impact on protein function but my play roles in regulating
splice variation, rate of transcription, or have epistatic effects.

Network analysis was performed to determine the relatedness of
two sets of haplotypes for each gene of interest: (1) haplotypes
having>1% global haplotype frequency (Fig. 4), and (2) haplotypes
observed more than once in the 1000 Genomes Project dataset (Fig. S2).
Networks for UGT2B7, ABCB1-Block 3, ABCB1-Block 2, and ABCB1-
Block-1 haplotypes (Fig. S2) appear to have more clearly defined hap-
lotype relationships, less looping (multiple haplotypes may have mul-
tiple relationships with nearby haplotypes), and/or less reticulation
(the degree of “webbing” in the network) than those of OPRM1 and
COMT. This observation is possibly attributable to the relatively few
number of polymorphisms separating OPRM1 and COMT haplotypes or
be an artifact of deleting private mutations which may sufficiently

Fig. 3. Haplotype composition of 19, 3, 16, 17, 7, 18, and 21 haplotypes in UGT2B7 (A), ABCB1-Block -1 (B), ABCB1-Block 1 (B), ABCB1-Block 2 (B), ABCB1-Block 3 (B), OPRM1 (C), and
COMT (D), respectively, with global frequencies≥ 1%. Variant effect predictions presented by Wendt et al. [27] using Sort Intolerant From Tolerant [34–39], Polymorphism Phenotyping
v2 [34,40,41], Protein Variant Effect Analyzer [42–44], and Human Splicing Finder [45].
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differentiate the relationships between haplotypes; alternatively, the
substantial reticulation in the OPRM1 and COMT haplotype networks
might also suggest some degree of recombination between the regions
of interest. Most major haplotypes in all four genes were observed in all
five super-populations while many minor haplotypes were unique to
one super-population, namely African (i.e., UGT2B7 haplotypes stem-
ming from UGT2B7-H19). This observation may be due to population-
specificity and/or sampling effects.

There were 1414, 225, 1530, 567, 17, 1219, and 1267 unique
UGT2B7, ABCB1-Block 3, ABCB1-Block 2, ABCB1-Block 1, ABCB1-Block
-1, OPRM1, and COMT diplotypes, respectively, observed across 2504
individuals. The average global diplotype frequencies were
7.07 × 10−4 ± 0.00151 for UGT2B7, 0.00444 ± 0.0234 for ABCB1-
Block 3, 6.534 × 10−4 ± 0.00149 for ABCB1-Block 2,
0.00176 ± 0.00685 for ABCB1-Block 1, 0.0588 ± 0.125 for ABCB1-

Block -1, 8.20 × 10−4 ± 0.00211 for OPRM1, and
7.96 × 10−4 ± 0.00142 for COMT. Population-specific diplotype fre-
quencies are displayed in Fig. S5. The average observed diplotype
heterozygosity was 0.850 ± 0.129, 0.745 ± 0.172, 0.690 ± 0.224,
0.753 ± 0.170 0.687 ± 0.191 for the African (AFR), Ad Mixed
American (AMR), East Asian (EAS), European (EUR), and South Asian
(SAS) super-populations, respectively. Prior to Bonferroni correction
(p < 0.05), UGT2B7, OPRM1, and COMT deviated significantly from
HWE expectations in all five, two (AFR and EAS), and one (AMR) super-
populations, respectively. After Bonferroni correction (p < 0.00714),
UGT2B7 and OPRM1 deviated significantly from HWE expectations in
four (AMR, EAS, EUR, and SAS) and one (EAS) super-populations, re-
spectively, out of the five total super-populations (Fig. 5).

Fig. 4. Network analysis of UGT2B7 haplotypes 1–20 (A), ABCB1-Block 3 haplotypes 1–7 (B), ABCB1-Block 2 haplotypes 1–17 (C), ABCB1-Block 1 haplotypes 1–16 (D), ABCB1-Block -1
haplotypes 1–9 (E), OPRM1 haplotypes 1–18 (F), and COMT haplotypes 1–21 (G). The size of each circle is proportional to the global frequency of each haplotype, segments within each
circle are proportional to the super-population haplotype frequency, and lines connecting circles are dashed with the number of mutations separating two haplotypes.
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3.2. Intergenic analyses

Unrooted neighbor-joining trees (Fig. S4) of super- and sub-popu-
lations using each gene individually (ABCB1 is a combination of all four
haplotype blocks) tend to show separation more so of the AFR and EAS
populations while the AMR, EAS, and SAS populations cluster closer
together. Considering all five genes (Fig. 6) the same super-population
trend is seen. Generally, the sub-populations within each super-popu-
lation were grouped closely together; however, the Gujarati Indian from
Houston, Texas (GIH) and the Peruvians from Lima, Peru (PEL) popu-
lations plot separately from the group of AMR, EUR, and SAS sub-po-
pulations.

Intergenic pairwise LD was tested using full-gene haplotypes for
CYP2D6 [25], UGT2B7, ABCB1-Block 3, ABCB1-Block 2, ABCB1-Block 1,
ABCB1-Block -1, OPRM1, and COMT to identify associations between
metabolically relevant genes. Prior to Bonferroni correction (p < 0.05)
and after removal of significant associations between ABCB1 haplotype
blocks, there were ten, 16, eight, five, and ten significant pairwise LDs
in the AFR, AMR, EAS, EUR, and SAS super-populations, respectively
(Fig. 7Figs. 7 and S5). After Bonferroni correction (p < 0.00179),
there were six, five, one, two, and one significant pairwise LDs in the
AFR, AMR, EAS, EUR, and SAS super-populations, respectively, most of
which contain CYP2D6 and an additional downstream metabolic en-
zyme. The AFR super-population exhibited more LDs than any other
super-population (though the significant correlations are weak [average
Pearson’s r = 0.0181]) and those increased LDs are detected in the AFR
sub-populations as well. These data are contrary to the expectations of
lower LD in AFR populations compared with other population groups
[55] but were observed with the individual SNP data as well so this
observation is not surprising [27]. However, the effect may be arti-
factual and possibly explained by the highly polymorphic nature of
these genes in the AFR population which results in an overall low fre-
quency of each haplotype (Fig. 2). Consequently, a large number of
diplotypes may be observed only once in the AFR super-population,
making the comprised haplotypes appear to be in LD due to scant ob-
servations of each haplotype. When compressed to minimize the impact
of rare diplotypes using the “collapse less-frequent alleles” function in
GDA, significant LDs were observed between CYP2D6 and UGT2B7,
ABCB1-Block -1, ABCB1-Block 1, ABCB1-Block 2, ABCB1-Block 3,
OPRM1 and COMT, with Pearson’s r-values ranging from −0.0562 to

0.0610 for AFR and −0.0903 to 0.129 for AMR. Though not observed
across the whole ADME process, there were some significant LDs be-
tween CYP2D6 and other downstream enzymes in the EAS, EUR, and
SAS populations as well. Of particular interest are the significant pair-
wise LDs between CYP2D6/UGT2B7 (−0.0562 [AFR] to 0.0934
[AMR]) and CYP2D6/COMT (−0.0902 [EUR] to 0.129 [AMR]) in all
five super-populations, which may represent associations between their
functional impact. The COMT locus is found in a one megabase (Mb)
region of chromosome 22 with a relatively high average recombination
rate (2.40 ± 1.56 centimorgans/Mb) which may artificially inflate the
LD pattern involving this locus [55–59]. These empirical data have not
yet been explored and more research is needed to support whether an
effect is real.

Using previously identified genotype-phenotype data
[13,17,29–31,51–53] and additional polymorphisms characterized by
Wendt et al. [27], the activities of UGT2B7, ABCB1, OPRM1 and COMT
were predicted for each 1000 Genomes Project individual. When
grouped by CYP2D6-inferred metabolizer phenotype as a global cohort
(2504 self-reported healthy individuals), there was no association de-
tected between metabolizer phenotype and the diplotype-predicted
activity of the selected downstream metabolically-relevant enzymes.
Positive and negative correlations were observed between COMT
(p = 0.0223) and UGT2B7 (p = 0.0389) and CYP2D6 activities, re-
spectively; however the variance at CYP2D6 activity score of 3 is quite
large and may have influenced the significance of this relationship
(Fig. 8A shaded regions). CYP2D6 activity score of 3 was only detected
in one Toscani in Italia individual who carries one normally active and
one increased activity CYP2D6 * allele (CYP2D6*1/*53). On the super-
population level, there were more obvious trends, again between
UGT2B7 and COMT activities and the CYP2D6 activity score. Two
super-populations showed significant associations between CYP2D6
and other enzyme activity: AMR and UGT2B7 (p = 0.0340), and EAS
and OPRM1 (p = 0.0361). The remaining super-populations and genes
did not exhibit significant associations between the CYP2D6-inferred
metabolizer phenotype and diplotype-predicted downstream metabolic
activity. Variant effect predictions [34–45] suggested that all 1000
Genomes Project self-reported healthy individuals possess an ABCB1
diplotype that confers abnormal transporter activity. This observation
may be misleading due to inaccuracies of the variant effect prediction
programs used [27]. The functional consequences of individual ABCB1

Fig. 5. Observed and expected heterozygosity of ABCB1-Block -1, ABCB1-Block 1, ABCB1-Block 2, ABCB1-Block 3, COMT, OPRM1, and UGT2B7 haplotypes in five super-populations
(African [AFR] in solid circles; Admixed American [AMR] in solid triangles; East Asian [EAS] in squares; European [EUR] in plus signs; South Asian [SAS] in “X”-filled squares) and the 26
sub-populations within each super-population. The size of each data point represents the Hardy-Weinberg Equilibrium p-value for each population; labeled populations indicate sig-
nificance after Bonferroni correction (p < 0.00714).
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polymorphisms, the combined impact of multiple ABCB1 polymorph-
isms, and the interaction between the effects of multiple polymorph-
isms in different genes are unavailable for comparison in this study but
eventually will be needed to be empirically evaluated in affected, or

drug-exposed, populations. If these observations are correct, the re-
lative abundance of these splice-altering polymorphisms suggests that
decreased ATP-dependent efflux efficiency may be the norm for self-
reported healthy individuals. For example, rs2235027 has an alternate

Fig. 6. Neighbor-joining trees for five super- (A) and twenty-
six sub-populations (B) in the 1000 Genomes Project using
pairwise genetic distances based on CYP2D6 [25], UGT2B7,
ABCB1-Block 3, ABCB1-Block 2, ABCB1-Block 1, ABCB1-Block
-1, OPRM1, and COMT haplotype assignments.

Fig. 7. Heat maps of pairwise linkage disequilibrium p-values using CYP2D6 [25], UGT2B7, ABCB1-Block 3, ABCB1-Block 2, ABCB1-Block 1, ABCB1-Block -1, OPRM1, and COMT
diplotype in the African (AFR), Admixed American (AMR), East Asian (EAS), European (EUR), and South Asian (SAS) super-populations.
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allele frequency of 0.517, 0.516, 0.383, 0.509, and 0.397 in the AFR,
AMR, EAS, EUR, and SAS super-populations, respectively [27]. It can be
hypothesized that affected, or drug-exposed, individuals possess addi-
tional polymorphisms, or are enriched for those identified here, that
further alter transporter function and play a role in the idiosyncratic
drug response phenotype [60–63]. Also epistatic interactions between
multiple ABCB1 SNPs/INDELs have been demonstrated to influence
antiepileptic drug resistance [64]. Possibly a similar phenomenon is
observed in self-reported healthy individuals who have either 1) not
been exposed to a drug with which the epistasis-associated phenotype is
observed or 2) are expressing a low level phenotype below level of
personal discomfort and reporting.

4. Conclusions

Full-gene haplotypes of four genes encoding trans-acting T-meta-
bolism proteins, UGT2B7, ABCB1, OPRM1, and COMT, were defined
and characterized using substantially more polymorphic sites than
previously employed in pharmacogenetic studies. In doing so, a large
number of haplotypes were observed. The data presented demonstrate
significant LDs between full-gene haplotypes of CYP2D6 and those of
UGT2B7 and COMT; however, the functional effects of these findings
need to be determined empirically. The relatively low frequency of each

haplotype and associated diplotype may confound LD estimates simply
because each haplotype was only observed in combination with one
other haplotype. This study also proposed an extended ABCB1-Block -1,
which included distal untranslated exon 1, and did not substantially
increase acquired information over the truncated Block -1 reported by
Sai et al. [30,31]. Most individual haplotypes identified in this study
were quite rare; however, relatively common haplotypes (≥1% global
frequency) were identified which contain at least one damaging, or
most likely damaging, polymorphism. It should be noted that copy
number variation and CYP2D6/CYP2D7 gene conversion do occur in
some individuals, primary UMs and may alter the presented LD and
regression patterns [65]. These events were not considered herein for
determining of CYP2D6 activity [11] due to the limitations of short
read sequences that comprise 1000 Genomes Project data [66,67]. It is
likely that ongoing developments in longer read sequencing technolo-
gies will provide more confident interpretation of structural variation
from existing short-read sequences [68–71].

The variant effects of many polymorphisms included in these hap-
lotype definitions have not been empirically evaluated by the phar-
macogenetics/pharmacogenomics community. There are obvious lim-
itations to using an algorithmic approach to variant effect [72];
however, the predicted implications on phenotype should not be
overlooked, instead they can be used to narrow the pool of potentially

Fig. 8. Regression analysis between CYP2D6 metabolizer phenotype [25] and predicted activity of downstream metabolic enzymes UGT2B7 (blue), ABCB1 (red), OPRM1 (green), and
COMT (black) in the global population of 2504 1000 Genomes Project individuals (A) and by super-populations (B). Predicted activity of each trans-acting metabolic enzyme is based on
the sum of predicted haplotype activities and ranges from zero to two (inactive to normally active, respectively). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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causal variants/haplotypes to explore empirically. The inclusion of only
self-reported healthy individuals in the 1000 Genomes Project means
that additional functionally-relevant haplotypes may be selected
against being represented in this dataset. This limiting factor may im-
pact the analyses performed above. It is likely that additional poly-
morphisms and/or specific haplotypes may be enriched, or selected for,
in affected, or T-exposed, cohorts [73–75]. As such, there potentially
are additional damaging haplotypes in these affected groups that have
not been observed herein so a full-gene interrogation of affected cohorts
may provide greater resolution to damaging haplotype population
distribution. This possibility lends support to utilizing a comprehensive
genotyping approach, such as relatively long-read MPS or continuous-
read nanopore technology in pharmacogenetic/pharmacogenomic in-
terrogations [70,71,76].

Though limited to a large cohort of self-reported healthy in-
dividuals, associations between individual genes have been identified
which may be clinically significant. Though slight, there is a relation-
ship between the CYP2D6-inferred metabolizer phenotype and the di-
plotype-predicted activities of UGT2B7, ABCB1, OPRM1, and COMT.
This association highlights the need for comprehensive functional
evaluation of the impact of polymorphisms in all five genes, and/or
combinations of two, three, or four of these genes, on drug metabolism
in the same individuals. It is reasonable to hypothesize that empirical
evaluation of these targets will reveal the advantage of combinatorial
pharmacogenetic profiles in regards to increased patient efficacy and
even assisting with medico-legal accident reconstruction [18–20].
Currently, these data remain relatively scarce in the literature. The data
presented herein provide a basis to interrogate the highly polymorphic
T-metabolism pathway, defining full-gene haplotypes for, and char-
acterizing the association between, five pharmacogenes that can be
utilized in clinical pharmacogenetic evaluations and post-mortem mo-
lecular autopsy using gene-targeted MPS. It is likely that these data can
be expanded upon, by interrogating additional ADME gene haplotypes,
for broad applicability for predicting metabolizer phenotype following
exposure to other opioid drugs.
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