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INTRODUCTION

Cancer and many other major diseases are often 
caused by varieties of subtle modifications in biological 
sequences, typically by various types of post-translational 
modification (PTM or PTLM) in protein [1, 2], post-
replication modification (PTRM) in DNA [3] and post-
transcription modification (PTCM) in RNA [4]. In order 
to reveal the pathological mechanisms of these diseases 
and find new and revolutionary strategies to treat them, 
many efforts have been made with the aim to identify the 
possible modified sites in protein (see, e.g., [5–14], DNA 
[15, 16], and RNA sequences [17, 18]).

Protein phosphorylation is one of the most-studied 
post-translational modification (PTM or PTLM) that can 
alter the structural conformation of a protein, causing it to 
become activated, deactivated, or modifying its function. 
The most commonly phosphorylated amino acids are 
serine (S-type), threonine (T-type), and tyrosine (Y-type). 

In human cells, phosphorylation also plays a critical 
role in the transmission of signals controlling a diverse 
array of cellular functions, such as cell growth, survival 
differentiation, and metabolism; while its dysregulation 
is implicated in many diseases. Therefore, information 
of phosphorylation sites in proteins is significant for both 
basic research and drug development. 

iPhos-PseEn: Identifying phosphorylation sites in proteins by 
fusing different pseudo components into an ensemble classifier

Wang-Ren Qiu1,2, Xuan Xiao1,3, Zhao-Chun Xu1, Kuo-Chen Chou3,4,5

1Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China
2Department of Computer Science and Bond Life Science Center, University of Missouri, Columbia, MO, USA
3Gordon Life Science Institute, Boston, MA, USA
4Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
5Center of Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, 
Chengdu, Sichuan, China

Correspondence to: Wang-Ren Qiu, email: qiuone@163.com 
Xuan Xiao, email: xxiao@gordonlifescience.org 
Kuo-Chen Chou, email: kcchou@gordonlifescience.org

Keywords: protein phosphorylation, pseudo components, random forests, ensemble classifier

Received: April 05, 2016    Accepted: May 23, 2016    Published: June 13, 2016

ABSTRACT
Protein phosphorylation is a posttranslational modification (PTM or PTLM), 

where a phosphoryl group is added to the residue(s) of a protein molecule. The 
most commonly phosphorylated amino acids occur at serine (S), threonine (T), and 
tyrosine (Y). Protein phosphorylation plays a significant role in a wide range of 
cellular processes; meanwhile its dysregulation is also involved with many diseases. 
Therefore, from the angles of both basic research and drug development, we are 
facing a challenging problem: for an uncharacterized protein sequence containing 
many residues of S, T, or Y, which ones can be phosphorylated, and which ones 
cannot?  To address this problem, we have developed a predictor called iPhos-PseEn 
by fusing four different pseudo component approaches (amino acids’ disorder scores, 
nearest neighbor scores, occurrence frequencies, and position weights) into an 
ensemble classifier via a voting system.  Rigorous cross-validations indicated that 
the proposed predictor remarkably outperformed its existing counterparts. For the 
convenience of most experimental scientists, a user-friendly web-server for iPhos-
PseEn has been established at http://www.jci-bioinfo.cn/iPhos-PseEn, by which 
users can easily obtain their desired results without the need to go through the 
complicated mathematical equations involved. 
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Many efforts have been made to identify the 
protein phosphorylation. These methods include mass 
spectroscopy [19, 20], phosphor-specific antibody [21], 
etc. Unfortunately, these experimental techniques are 
both time-consuming and expensive. Facing the explosive 
growth of protein sequences merging in post genomic age, 
it is highly desired to develop computational methods 
for effectively identifying the phosphorylation sites in 
proteins.

Actually, by using computational approaches such 
as artificial neural networks, hidden Markov models, and 
support vector machines, some prediction method were 
developed based on various different features including 
disorder scores, KNN scores, amino acid frequency 
[22, 23], and attribute grouping and position weight amino 
acid composition [24]. 

In view of its importance and urgency, it is certainly 
worthwhile to further improve the prediction quality by 
introducing some novel approaches as elaborated below. 

According to the Chou’s 5-step rule [25] and 
demonstrated in a series of recent publications [11, 12, 
18, 26–30], to develop a really useful sequence-based 
predictor for a biological system, we should stick to the 
following five guidelines and make them crystal clear: 
(1) how to construct or select a valid benchmark dataset 
to train and test the predictor; (2) how to formulate 
the biological sequence samples with an effective 
mathematical expression that can truly reflect their 
essential correlation with the target concerned; (3) how 
to introduce or develop a powerful algorithm (or engine) 
to run the prediction; (4) how to properly conduct cross-
validation tests to objectively evaluate the anticipated 
accuracy; (5) how to provide a web-server and user guide 
to make people very easily to get their desired results. 
Below, we are to address the five procedures one-by-one. 
However, their order may be changed in order to match the 
rubric style of Oncotarget. 

RESULTS AND DISCUSSION

A new ensemble web-server predictor

By fusing four different pseudo component 
approaches, a new ensemble classifier, named iPhos-
PseEn, has been established for predicting phosphorylation 
sites in proteins.

Success rates and comparison with the existing 
methods

The success rates achieved by the iPhos-PseEn 
predictor via the 5-fold cross validation for S-, T- and 
Y-type phosphorylation are given in Table 1, where for 
facilitating comparison the corresponding rates by Musite 
[22] and PWAAC [24] are also listed. As we can see from 
the table, compared with its counterparts, iPhos-PseEn is 

remarkably better than its counterparts in predicting all the 
three phosphorylation types as measured with all the four 
metrics, clearly indicating that the proposed predictor not 
only can achieve higher sensitivity, specificity, and overall 
accuracy but is also much more stable. As shown from 
the table, compared with Sp, the improvement in Sn is 
relatively less significant. This is quite normal because 
the metrics Sn and Sp are used to measure a predictor 
from two different angles and hence they are actually 
constrained with each other [28, 31, 32].

Graphical approach is a useful vehicle for analyzing 
complicated biological systems as demonstrated by a 
series of previous studies (see, e.g., [33–40]). Here, to 
provide an intuitive comparison, the graph of Receiver 
Operating Characteristic (ROC) [41, 42] was utilized to 
show the advantage of iPhos-PseEn over the Musite [22] 
and PWAAC [24]. In  Figure 1 the green and red graphic 
lines are the ROC curves for the Musite and PWAAC, 
respectively; while the blue graphic line for the proposed 
predictor iPhos-PseEn. The area under the ROC curve is 
called AUC (area under the curve). The greater the AUC 
value is, the better the predictor will be [41, 42]. As we 
can see from  Figure 1, the area under the blue curve 
is remarkably greater than that under the red or green 
line, once again indicating that the proposed predictor is 
indeed much better than Musite and PWAAC predictors. 
Therefore, it is anticipated that iPhos-PseEn will become 
a useful high throughput tool in this important area, or at 
the very least, play a complementary role to the existing 
methods.

Why could the proposed method enhance the 
prediction quality so significantly? The key is the 
following. Many important features, which have been 
proved being closely correlated with phosphorylation 
sites by previous investigators, such as disorder, nearest 
neighbor scores, amino acid occurrence frequency, and 
amino acid position weight, are fused into an ensemble 
classifier via the general PseAAC approach, as will be 
elaborated in the Materials and Methods section.

Web server and user guide 

As pointed out in two recent review papers [16, 65], 
a prediction method with its web-server available would 
practically much more useful. The web-server for iPhos-
PseEn has been established. Moreover, to maximize the 
convenience for users, a step-by-step guide is provided 
below.

(1)  Opening the web-server at http://www.jci-bioinfo.
cn/iPhos-PseEn, you will see the top page of 
iPhos-PseEn on your computer screen, as shown 
in  Figure 2. Click on the Read Me button to see a 
brief introduction about this predictor.

(2)  Either type or copy/paste your query protein 
sequences into the input box at the center of  Figure 
2. The input sequences should be in the FASTA 
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Table 1: A comparison of the proposed predictor with the existing methods based on the 5-fold 
cross-validation on exactly the same benchmark dataset

Prediction method Metrics
Type of phosphorylation

S T Y
Musitea

Acc (%)d

67.22 77.11 71.60
PWAAC b 67.89 66.65 63.04

iPhos-PseEnc 79.76 79.88 76.28
Musitea

MCCd

0.2538 0.2960 0.2472
PWAAC b 0.2342 0.2079 0.1720

iPhos-PseEnc 0.3901 0.3444 0.3244
Musitea

Sn (%)d

76.63 68.26 69.58
PWAAC b 71.74 69.23 67.70

iPhos-PseEnc 79.64 71.51 76.18
Musitea

Sp (%)d

66.28 77.94 71.79
PWAAC b 67.51 66.40 62.61

iPhos-PseEnc 79.78 80.68 76.29
aThe method developed by Gao et al. [22]. 
bThe method developed by Huang et al. [24]. 
cThe method proposed in this paper.
dSee Eq.14 for the definition of metrics. 

Figure 1: The intuitive graphs of ROC curves to show the performance of Musite, PWAAC, iPhos-PseEn, respectively, 
for the case of the center residue   is (A) S, (B) T, and (C) Y. See the main text for further explanation.
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format. For the examples of sequences in FASTA 
format, click the Example button right above the 
input box.

(3)  Select the phosphorylation type concerned: check 
on the S, T, or Y button to predict phosphoserine, 
phosphothreonine, or phosphotyrosine, respectively. 

(4)  Click on the Submit button to see the predicted 
result. For example, if you use the Sequence_S in 
the Example window as the input and check on the 
S button, after 20 seconds or so since your 
submitting, you will see the following on your 
screen: Sequence_S contains 11 S residues, of 
which 2 are predicted to be of phosphorylation site 
and they are at the sequence positions 2 and 37. If 
you use the Sequence_T as the input and check on 
the T button, you will see: Sequence_T contains 11 
T residues, of which 5 are of phosphorylation site 
and at positions 12, 113, 118, 123, and 136. If you 
use the Sequence_Y as the input and check on the 
Y button, you will see: Sequence_Y contains 12 Y 
residues, of which 3 are of phosphorylation site and 
at the positions 4, 119 and 199. Compared with 
experimental observations, the above
( )11 11 12 34+ + =  Predicted results contain 1 false 

negative result ( )N +
− that is located at 9th S 

residues in sequence_S, and 4 false positive results 
( )N −

+ that are located at the 11th, 123th, 136th 
residues in Sequence_T as well as the 119th Y 
residue in Sequence_Y. In other words, the total 
number of phosphorylation sites involved in the 
above predictions is 3 2 2 7,N + = + + = while the 
total number of non-phosphorylation sites 
investigated is 8 9 10 27.N − = + + =  Substituting 
these data into Eq.14, we have Sn 85.71%,= ,  
Sp = 85.19% Acc 85.29%,=  and Mcc = 0.6292 
quite consistent with the rates in Table 1 obtained 
by iPhos-PseEn on the benchmark dataset via the 
5-fold cross validation test.

(5)  As shown on the lower panel of  Figure 2, you may 
also choose the batch prediction by entering your 
e-mail address and your desired batch input file (in 
FASTA format of course) via the Browse button. 
To see the sample of batch input file, click on the 
button Batch-example.

(6)  Click the Supporting Information button to 
download the benchmark dataset used in this study.

(7)  Click the Citation button to find the relevant 
papers that document the detailed development and 
algorithm for iPhos-PseEn.

Figure 2: A semi-screenshot to show the top-page of the iPhos-PseEn web-server at http://www.jci-bioinfo.cn/iPhos-
PseEn.
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MATERIAL AND METHODS

Benchmark dataset

To ensure a high quality, the benchmark dataset used 
in this study was constructed based on UniProtKB/Swiss-
Prot database (released September 2015) at http://www.
ebi.ac.uk/uniprot/ according to following the procedures: 
(1) Open the web site at http://www.uniprot.org/, followed 
by clicking the button “Advanced”. (2) Select “PTM/
Processing” and “Modified residue [FT]” for “Fields”. (3) 
Select “Any experimental assertion” for “Evidence”. (4) 
Type “human” for “Term” to do search. (5) Collected were 
only those proteins that consist of 50 and more amino acid 
residues to exclude fragments. (6) The proteins thus 
obtained were subject to a screening operation to remove 
those sequences that had 50%≥  pairwise sequence 
identity to any other. 

After strictly following the aforementioned procedures, 
we finally obtained 1,770 proteins, of which 638 are non-
phosphorylated proteins and 1,132 are phosphorylated 
proteins. The latter contain 845 phosphoserine proteins, 386 
phosphothreonine proteins, and 249 phosphotyrosine proteins. 
Note that some of phosphorylated proteins may be with multi-
label, meaning they may belong to more than one type.

For facilitating description later, the Chou’s peptide 
formulation was adopted. The formulation was used 
to investigate the signal peptide cleavage sites [43], 
nitrotyrosine sites [9], methylation sites [7], enzyme 
specificity [44], protein-protein interactions [45], 
hydroxyproline and hydroxylysine sites [8], and protein-
protein binding sites [46]. According to Chou’s scheme, a 
potential phosphorylation site-containing peptide sample 
can be generally expressed by

( 1) 2 1 1 2 ( 1)( ) R R R R R R R Rξ −ξ − ξ− − − + + + ξ− +ξ=P    (1)

where the symbol   denotes the single amino acid code 
S, T, or Y, the subscript ξ  is an integer, R−ξ  represents the 
ξ -th upstream amino acid residue from the center, the 
R+ξ  the ξ -th downstream amino acid residue, and so forth 
( Figure 3). The (2 1)ξ + -tuple peptide sample ( )ξP   can 
be further classified into the following two categories:

( ) ( )
( )

, if its center is a phosphorylation site
, other wise

+
ξ

ξ −
ξ

∈


P
P

P





 
  (2)

where ( )+
ξP   denotes a true phosphorylation segment 

with S, T, or Y at its center, ( )−
ξP   denotes a 

corresponding false phosphorylation segment, and the 
symbol ∈  means “a member of” in the set theory.

Figure 3: A schematic drawing to show the peptide model ( )
ξP   when (A) = S , (B) ,= T and (C) = Y . See 

Eq.3 as well as the relevant text for further explanation.
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In literature the benchmark dataset usually consists 
of a training dataset and a testing dataset: the former is 
used for training a model; while the latter, testing the 
model. But as pointed out in a comprehensive review [47], 
there is no need to artificially separate a benchmark dataset 
into the two parts if the prediction model is analyzed with 
the jackknife test or subsampling (K-fold) cross-validation 
because the outcome thus obtained is actually from a 
combination of many different independent dataset tests. 
Therefore, the benchmark dataset ( )ξ   for the current 
study can be formulated as

( )
( )
( )

S (S) (S),     when S

T (T)  (T),    when T

Y (Y)  (Y),  when Y

+ −
ξ ξ ξ

+ −
ξ ξ ξ

+ −
ξ ξ ξ

 = =
 = =


= =







  

  

  







(3)

where the positive subset ( )+
ξ   only contains the 

samples of true phosphorylation segments ( )+
ξP  , and the 

negative subset ( )−
ξ   only contains the samples of false 

phosphorylation segments ( )−
ξP   (see Eq.2); while   

represents the symbol for “union” in the set theory.
The detailed procedures to construct the benchmark 

dataset are as follows. (1) As done in [48], slide the 
( )2 1ξ + -tuple peptide window along each of the 
aforementioned 1,770 protein sequences, and collected 
were only those peptide segments that have S, T, and Y at 
the center. (2) If the upstream or downstream in a protein 
sequence was less than ξ or greater than L − ξ  where L is 
the length of the protein sequence concerned, the lacking 
residue was filled with the same residue of its closest 
neighbor. (3) The peptide segment samples thus obtained 
were put into the positive subset ( )+

ξ  if their centers 
have been experimentally annotated as the phosphorylation 
sites; otherwise, into the negative subset ( )−

ξ  . (4) To 
reduce redundancy, all those peptide samples were 
removed if they had pairwise sequence identity with any 
other. 

Note that the length of peptide samples and their 
number thus generated would depend on the ξ value. 
Many tests by previous investigators [22–24], however, 
had indicated that it would be most promising when 6ξ =
or the sample’s length was 2 1 13.ξ + =  Accordingly, 
hereafter we only consider the case of 6ξ = ; i.e., the 
samples with 13 amino acid residues. Thus, the benchmark 
datasets thus obtained for ( )6 S ,ξ=  ( )6 T ,ξ=  and 

( )6 Y  ξ=  are given in Supporting Information S1, S2, and 
S3, respectively. Listed in Table 2 is a summary of their 
sizes. 

Incorporate extracted features into general 
pseudo amino acid composition 

With the avalanche of biological sequence generated 
in the post-genomic age, one of the most important 
problems in computational biology is how to formulate 
a biological sequence with a discrete model or a vector, 
yet still considerably keep its sequence order information 
or essential feature. This is because all the existing 
machine-learning algorithms can only handle vector but 
not sequence samples, as elaborated in [16]. 

To address this problem, the pseudo amino acid 
composition [49, 50] or PseAAC was proposed. Ever since 
the concept of pseudo amino acid composition or Chou’s 
PseAAC [51–53] was proposed, it has rapidly penetrated into 
many biomedicine and drug development areas [54–56] and 
nearly all the areas of computational proteomics (see, e.g., 
[57–63] as well as a long list of references cited in [64, 65]). 

Because it has been widely and increasingly used, 
recently three powerful open access soft-wares, called 
‘PseAAC-Builder’ [51], ‘propy’ [52], and ‘PseAAC-
General’ [64], were established: the former two are for 
generating various modes of Chou’s special PseAAC; 
while the 3rd one for those of Chou’s general PseAAC 
[25], including not only all the special modes of feature 
vectors for proteins but also the higher level feature 
vectors such as “Functional Domain” mode (see Eqs.9-10 
of [25]), “Gene Ontology” mode (see Eqs.11-12 of [25]), 
and “Sequential Evolution” or “PSSM” mode (see Eqs.13-
14 of [25]). Inspired by the successes of using PseAAC 
to deal with protein/peptide sequences, three web-servers 
[66–68] were developed for generating various feature 
vectors for DNA/RNA sequences. Particularly, recently 
a powerful web-server called Pse-in-One [69] has been 
developed that can be used to generate any desired feature 
vectors for protein/peptide and DNA/RNA sequences 
according to the need of users’ studies.

According to the general PseAAC [25], the peptide 
sequence of Eq.1 or Eq.4 can be formulated as

[ ]6 1 2( )                uξ= Ω= Ψ Ψ Ψ Ψ TP   (4)

where the components 1, 2, , )(u uΨ = Ω  will be defined 
by how to extract useful features from the relevant protein/
peptide sequence, and T is the transpose operator. 

Disorder Score (DS)

Disorder score is a feature to measure the stability 
of the local structure. Although disordered region does 
not have fixed three-dimensional structure in proteins, its 
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functional importance has been increasingly recognized 
[70–73]. It was recently used for identifying protein 
methylation sites [7]. Particularly, it has been observed 
that the phosphorylation sites have a strong tendency to 
be located in disordered regions [74]. Using the VSL2 
program [75], the disorder score of each amino acid 
residues in a protein can be calculated and expressed by

1,1 1,2 1,20

2,1 2,2 2,20

,1 ,2 ,20

,1 ,2 ,20

k k k

L L L

d d d
d d d

d d d

d d d

 
 
 
 

=  
 
 
 
  





   



   



 (5)

where ,k jd  is the DS score of the k-th amino acid residue 
( 1, 2, , )k L= 

 when its type is ( 1, 2, , 20)j =  . Thus, to 
reflect the disorder information, the PseAAC of Eq.4 was 
defined by

[ ]DS 1 2 13@    @       @= TP 
(6)

where the components are taken from the disorder score 
matrix of Eq.5 according to the constituent amino acids in 
Eq.1 as well as their positions in the relevant protein.

K Nearest Neighbor Score (KNNS)

Local sequence clusters often exist around 
phosphorylation sites because the PTM samples in a same 
family usually share similar patterns. To reflect this kind of 
patterns, the PseAAC of Eq.4 was defined by

[ ]KNNS 1 2 3 4 5            = κ κ κ κ κ TP (7)

as done in [22, 23] via the BLOSUM62 matrix [76]. 

Amino Acid Occurrence Frequency (AAOF)

To reflect the amino acid occurrence frequency, the 
component in Eq.4 are defined by a 20-D vector; i.e.,

[ ]AAOF 1 2 20          f f f= TP 

(8)

where f1 is the occurrence frequency of amino acid A in 
the relevant 13-tuple peptide sample, f2 is the occurrence 
frequency of amino acid C, and so forth (according to the 
alphabetical order of the single-letter codes for 20 native 
amino acids).

Position Weight Amino Acid Composition 
(PWAAC)

Position weight amino acid composition can reveal 
the sequence-order information around some PTM 
sites, and it had been used in identifying viral protein 
phosphorylation sites [24] as well as methylation sites 
[77]. To reflect this kind of information, the PseAAC of 
Eq.4 was defined by

[ ]PWAAC 1 2 3 4 5c    c    c    c    c= TP (9)

where 

1c          ( , , )
( 1)i ij

j

j
j jδ

ξ

=−ξ

 
= + = −ξ ξ 
ξ ξ + ξ 

∑  (10)

where ξ  is the same as in Eq.1, and 

1,    if  
0,  otherwiseij

i j
δ

=
= 


(11)

Table 2: Summary of phosphorylation site samples in the benchmark dataseta

Subset
Phosphorylation type and number of samples

 = S  = T  = Y

Positive 6 ( )+
ξ=  4,317 923 743

Negative 6 ( )−
ξ=  43,532b 9,739c 8,061d

aSee Eqs.1-3 and the relevant text for further explanation.
bOf the negative samples, 21,564 from the 845 phosphoserine proteins and the 21,968 from the 638 non-phosphorylated 
proteins.
cOf the negative samples, 4,307 from the 386 phosphothreonine proteins and the 5,432 from the 638 non-phosphorylated 
proteins.
dOf the negative samples, 3,968 from the 249 phosphotyrosine proteins and the 4,362 from the 638 non-phosphorylated 
proteins.
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Operation engine 

Random forests algorithm

Widely used in various areas of computational 
biology (see, e.g. [11, 12, 27, 45, 46, 78–80]), the random 
forests (RF) algorithm is a powerful algorithm. Its detailed 
formulation has been clearly described in [81], and hence 
there is no need to repeat here.

As shown above, by using DS, KNNS, AAOF, 
and PWAAC, the sample of Eq.1 can be defined by four 
different PseAAC vectors, as indicated in Eqs.6, 7, 8, and 
9, respectively. Accordingly, we have four different basic 
RF predictors; i.e.,

RF(1), when the sample is based on DS or Eq.6        
RF(2), when the sample is based on KNNS or Eq.7  

 
RF(3), when the sample is based on AAOF or Eq.8  
RF(4), when the sample is based on PWAAC or Eq.9










(12)

Ensemble random forests 

As demonstrated by a series of previous studies, such 
as signal peptide prediction [82, 83], membrane protein 
type classification [84, 85], protein subcellular location 
prediction [86–88], protein fold pattern recognition [89], 
enzyme functional classification [90], protein-proteins 
interaction prediction [45], and protein-protein binding 
site identification [46], the ensemble predictor formed by 
fusing an array of individual predictors via a voting system 
can generate much better prediction quality. 

Here, the ensemble predictor is formed by fusing 
the aforementioned four different individual RF predictor 
of Eq.12; i.e.,

4
1(1)  (2)  (3) (4) ( )E

iRF RF RF RF RF i== ∀ ∀ ∀ = ∀ (13)

where E  denotes the ensemble predictor, and the 
symbol ∀  denotes the fusing operator [47]. In the current 
study, the concrete fusion process can be described as 
follows. For a query sample of Eq.1, it would be in turn 
predicted by RF(1), RF(2), RF(3) and RF(4), respectively. 
If most outcomes indicated that it belonged to 
phosphorylation segment, its central residue   was 
predicted to be phosphorylation site; otherwise, non- 
phosphorylation site. If there was a tie, the result could be 
randomly picked between the two. But this kind of tie case 
rarely happened. For more detailed about this, see a 
comprehensive review [47] where a crystal clear 
elucidation with a set of elegant equations are given and 
hence there is no need to repeat here.

The predictor established via the above procedures 
is called “iPhos-PseEn”, where “i” stands for identify”, 
“Phos” for “phosphorylation site”, and “Pse” for “pseudo 
components”, and “En” for “ensemble”. Depicted in  Figure 4 
is a flowchart to show how the ensemble predictor is working.

As mentioned in Introduction, among the five 
guidelines in developing a useful predictor, one of them 

is how to objectively evaluate its anticipated success 
rates [25]. To fulfil this, the following two things need to 
consider: one is what metrics should be used to measure 
the predictor’s quality; the other is what kind of test 
method should be taken to derive the metrics rates. Below, 
let us to address such two problems.

Metrics used to reflect the success rates

A set of four metrics are usually used in literature 
to measure the quality of a predictor: (1) overall accuracy 
or Acc; (2) Mathew’s correlation coefficient or MCC; (3) 
sensitivity or Sn; and (4) specificity or Sp [91]. But the 
conventional formulations for the four metrics are not 
intuitive, and most experimental scientists feel hard to 
understand them, particularly for the MCC. Fortunately, 
if using the symbols introduced by Chou [92] in studying 
the signal peptides, the set of four metrics can be written 
as the following forms [5, 93]:

Sn 1 0 Sn 1

Sp 1 0 Sp 1

Acc  1 0 Acc 1

1
MCC  1 MCC 1

1  1

N
N
N
N

N N
N N

N N
N N

N N N N
N N

+
−
+

−
+
−

+ −
− +
+ −

+ −
− +
+ −

− + + −
+ − − +

+ −

= − ≤ ≤

= − ≤ ≤

+
= Λ = − ≤ ≤

+
 

− +  
 = − ≤ ≤

  − −
+ + 









  
 






  







(14)

where N +  represents the total number of true-
phosphorylation samples investigated, whereas N +

−  the 
number of phosphorylation samples incorrectly predicted 
to be of false- phosphorylation sample; N −  the total 
number of false-phosphorylation samples, whereas N −

+  
the number of false-phosphorylation samples incorrectly 
predicted to be of true- phosphorylation sample. 

According to Eq.14, the following are crystal clear. 
(1) When 0N +

− =  meaning none of the true-
phosphorylation samples is incorrectly predicted to be of 
false-phosphorylation sample, we have the sensitivity 
Sn 1= ; whereas N N+ +

− =  meaning that all the true-
phosphorylation samples are incorrectly predicted to be of 
false-phosphorylation sample, we have the sensitivity 
Sn 0= . (2) When 0N −

+ =  meaning none of the false-
phosphorylation samples is incorrectly predicted to be of 
true-phosphorylation sample, we have the specificity
 Sp 1= ; whereas N N− −

+ =  meaning that all the false-
phosphorylation samples are incorrectly predicted to be of 
true-phosphorylation sample, we have the specificity
 Sp 0. =  (3) When 0N N+ −

− += =  meaning that none of the 
true-phosphorylation samples in the positive dataset and 
none of the false-phosphorylation samples in the negative 
dataset is incorrectly predicted, we have the overall 
accuracy Acc 1=  and; MCC 1=  whereas N N+ +

− =  and 
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Figure 4: A flow chart to show how the four individual random forest predictors are fused into an ensemble classifier 
via a voting system. See Eqs.12-13 as well as the relevant text for further explanation.

N N− −
+ =  meaning that all the true-phosphorylation 

samples in the positive dataset and all the false-
phosphorylation samples in the negative dataset are 
incorrectly predicted, we have the overall accuracy 
Acc 0=  and MCC 1= − . (4) When / 2N N+ +

− =  and,
/ 2N N− −

+ =  we have Acc 0.5=  and MCC 0=  meaning 
no better than random guessing. 

As we can see from the above discussion, the set 
of metrics formulated in Eq.14 has made the meanings 
of sensitivity, specificity, overall accuracy, and Mathew’s 
correlation coefficient much more intuitive and easier-
to-understand, particularly for the meaning of MCC, as 
unanimously concurred and practically applied by many 
authors in a series of recent publications (see, e.g., [11, 12, 
18, 26, 27, 45, 94–102]).

Note that, of the four metrics in Eq.14, the most 
important are the Acc and MCC: the former reflects the 
overall accuracy of a predictor; while the latter, its stability 
in practical applications. The metrics Sn and Sp are used 
to measure a predictor from two opposite angles. When, 
and only when, both Sn and Sp of a tested predictor are 
higher than those of the other tested predictor, we can say 
the former predictor is better than the latter one.

Also, it is instructive to point out that the set of 
equations given in Eq.14 is valid for the single-label 
systems only. As for the multi-label systems whose 
emergence has become increasingly often in the system 
biology [103-105] and system medicine [106], a completely 
different set of metrics is needed as elucidated in [107].

Cross-validation
With a set of intuitive evaluation metrics clearly 

defined, the next step is what kind of validation method 
should be used to derive the metrics values.

The following three cross-validation methods are 
often used in literature: (1) independent dataset test, (2) 
subsampling (or K-fold cross-validation) test, and (3) 
jackknife test [108]. Of these three, however, the jackknife 
test is deemed the least arbitrary that can always yield a 
unique outcome for a given benchmark dataset as elucidated 
in [25]. Accordingly, the jackknife test has been widely 
recognized and increasingly used by investigators to 
examine the quality of various predictors (see, e.g., [57–59, 
109–115]). 

In this study, however, to reduce the computational 
time, we adopted the 5-fold cross-validation method, as 
done by many investigators with SVM as the prediction 
engine. Given below is a more rigorous description of 
5-fold cross-validation on a benchmark dataset  . 

First, randomly divided the benchmark dataset   
into five groups 1 , 2 ,  3 , 4 , and 5 , with each 
having approximately the same number of samples not 
only for the main-set level but also for all the sub-set 
levels considered, as can be formulated by 

1 2 3 4 5        (15)

where the symbol   means that the divided datasets are 
about the same in size, and so are their subsets [27]. Next, 
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each of the five sub-benchmark datasets was singled out 
one-by-one and tested by the model trained with the 
remaining four sub-benchmark datasets. The cross-
validation process was repeated for five times, with their 
average as the final outcome. In other words, during the 
process of 5-fold cross-validation, both the training 
dataset and testing dataset were actually open, and each 
sub-benchmark datasets was in turn moved between the 
two. The 5-fold cross-validation test can exclude the 
“memory” effect, just like conducting 5 different 
independent dataset tests.

As we can see from Table 2 or Supporting 
Information S1, S2, and S3, the negative subset ( )6

−
ξ=   

is much larger than the positive subset ( )6 .+
ξ=   The ratio 

is about 10:1 for all the three types of phosphorylation. 
Although this might reflect the real world in which the 
non-phosphorylation sites are always the majority 
compared with the phosphorylation ones, a predictor 
trained by such a highly skewed benchmark dataset 
would inevitably have the bias consequence that many 
phosphorylation sites might be mispredicted as non- 
phosphorylation ones. To deal with this kind of situation, 
we randomly divide the negative subset into ten groups 
with each having about the same size. Thus, for each of 
the three types of phosphorylation, we have ten 
benchmark datasets in which the positive and negative 
samples are about the same. It was based on each of such 
ten datasets that the 5-fold cross-validation was 
performed, followed by taking an average for the  
final score.

CONCLUSIONS

The iPhos-PseEn predictor is a new bioinformatics 
tool for identifying the phosphorylation sites in proteins. 
Compared with the existing predictors in this area, its 
prediction quality is much better, with remarkably higher 
sensitivity, specificity, overall accuracy, and Mathew’s 
correlation coefficient. For the convenience of most 
experimental scientists, we have provided its web-server 
and a step-by-step guide, by which users can easily obtain 
their desired results without the need to go through the 
detailed mathematics. 

We anticipate that iPhos-PseEn will become a 
very useful high throughput tool, or at the very least, a 
complementary tool to the existing methods for predicting 
the protein phosphorylation sites. 

Online Supporting Information

Please refer to "Supporting information S1, 
Supporting information S2, Supporting information S3" 
in Supplementary Materials
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