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Diabetic retinopathy (DR) is the common cause of diabetic vascular complications that leads to the blindness in the
working age population throughout the world. Free radicals mediated oxidative stress and inflammation play a
significant role in pathophysiology of DR. To find a new and safe drug to treat DR is still challenging and for that
purpose the natural compounds may be therapeutic agents. Here we show that sesamin (SES), which is the main
component of sesame seed and its oil, and has been reported as potent antioxidant and neuroprotective, could be
a therapeutic agent in DR. In the present study, we investigated protective effect of SES in Streptozotocin (STZ) in-
duced DR in mice. The mice were divided into three groups (Control, DR and DR+SES) for the study. After two
weeks post-diabetic establishment, mice were treated with SES (30 mg/kg BW, i.p, alternate day) for four weeks.
Mice body weight and blood glucose level were measured from each group. The microglial activation of retina
was determined by immunohistochemistry analysis by using Iba-1 as a microglia marker. Retinal mRNA levels of
Iba-1, tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS) and Intercellular Adhesion
Molecule 1 (ICAM-1) were examined by qRT-PCR. The level of iNOS protein expression was examined by
immunoblotting. Together these data demonstrate that SES treatment lowered the progression of diabetic retinal in-
jury by: 1) decreasing blood glucose level, 2) suppressingmicroglia activation, 3) reducing retinal TNF-α and ICAM-
1 levels and4) quenching iNOS expression. In conclusion, the results suggest that SES treatmentmaybe of therapeu-
tic benefit in reducing the progression of DR by ameliorating hyperglycemia and inflammation in diabetic retina.
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1. Introduction

Diabetic retinopathy (DR) is known tobe themost commonmicrovas-
cular complication of diabetes and a main cause of preventable blindness
among working adults (Abu El-Asrar et al., 2013). The entire
neurovascular unit of the retina may affected by diabetes as a
consequence of gradual neurodegeneration, gliosis, neuro-inflammation,
compromise of vascular blood-retinal barrier (BRB), edema, angiogenesis,
or necrosis factor-α; ICAM-1,
-binding adapter molecule 1;
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and eventual fibrosis (Gologorsky et al., 2012). An increasing body of
literature is reporting a positive association between DR and vascular
inflammatory reactions (Zhang et al., 2011). Several mechanisms
have been hypothesized to explain appearance of low-grade chronic
inflammation in the diabetic retina. These include: a direct effect of
hyperglycemia, dyslipidemia, advanced glycation end products,
hypertension, endoplasmic reticulum stress, systemic inflammation,
pro-inflammatory cytokines, oxidative stress, and the subsequent up-
regulation of leukocyte adhesion molecules (Tang and Kern, 2011).
Under these pathological conditions, normally quiescent microglial
cells become activated. Microglia are sensitive to smallest changes in
the environment as they continuously survey the retina for signs of
disease and cell damage. Thus, it is generally presumed that microglia
initiate neuro-inflammation and other glial cells respond to and amplify
these responses (Saijo and Glass, 2011). Reactive oxygen species and
pro-inflammatory mediators release by activated microglia lead ulti-
mately to vascular occlusion, tissue ischemia, and neuronal cell death
(Elsherbiny et al., 2013a).
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Table 1
The primer sets used for the detection of mouse genes by RT-PCR.

Gene Primer sequence (5′–3′) Accession number

Iba-1 GTCCTTGAAGCGAATGCTGG NM_019467
CATTCTCAAGATGGCAGATC

TNF-α CCCTCACACTCAGATCATCTTCT NM_013693.2
GTCACGACGTGGGCTACAG

ICAM-1 CGCTGTGCTTTGAGAACTGTG NM_010493
ATACACGGTGATGGTAGCGGA

iNOS ACA TCG ACC CGT CCA CAG TAT Primer Bank ID 6754872
CAG AGG GGT AGG CTT GTC TC

GAPDH CAT GGC CTC CAA GGA GTAAGA M32599
GAG GGA GAT GCT CAG TGT TGG

18S AGT GCG GGT CAT AAG CTT GC NR_003278
GGG CCT CAC TAA ACC ATC CA
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The current approach of DR treatment based on anti-inflammatory,
anti-angiogenesis drugs, vitrectomy, and laser photocoagulation is ef-
fective but exhibits adverse side effects too (Cheung et al., 2010). There-
fore, targeting biochemical andmolecular changes in the diabetic retina
by safe and potential therapeutic agents is needed to control the devel-
opment and progression of DR.

Sesamin (SES) is a phytonutrient of lignans class, and one of the
major components of sesame seed and its oil (Bournival et al., 2012b).
SES has been found to have various health beneficial effects, including
protection against oxidative stress (Baluchnejadmojarad et al., 2013;
Cao et al., 2015; Chen et al., 2015; Hou et al., 2014; Su et al., 2014),
anti-inflammation (Fukunaga et al., 2014; Lee et al., 2009; Li et al.,
2016; Phitak et al., 2012; Qiang et al., 2016), anti-hypertension
(Matsumura et al., 1998; Zhao et al., 2015), hypocholesterolemic
(Hirata et al., 1996) and hepatocyte-protecting effects (Akimoto et al.,
1993). Further, in the brain, SES was found to quench excess generation
of free radicals in different brain injury models (Cheng et al., 2006; Park
et al., 2015). SES was also reported to exhibit antioxidant and anti-
inflammatory effects in the murine microglial cell line BV-2 (Jeng
et al., 2005), rat primary microglia cells (Hou et al., 2003) and neuronal
cells (Hsieh et al., 2011). Interestingly, it has been shown that SES in-
hibits activation of p38-MAPK and NF-kB signaling pathways in pros-
trate cancer cells (Xu et al., 2015). In this consistency, we previously
demonstrated neuroprotective effect of sesame seed oil and SES in dif-
ferent models of brain injury (Ahmad et al., 2006, 2012; Khan et al.,
2010). The present study was therefore designed to explore the benefi-
cial effect of SES on STZ-induced DR in mice.
2. Materials and methods

2.1. Materials

Streptozotocin (STZ) was purchased from (Sigma, MO). Sesamin
(SES) was procured from (Sabinsa Corporation, USA). All the chemicals
used were AR and molecular grade.
2.2. Animals and treatment

Animal surgery and experiments were performed in accordance
with the Public Health Service Guide for the Care and Use of Laboratory
Animals (Department of Health, Education, andWelfare, National Insti-
tutes of Health Publication No. 80-23), Georgia Regents University
(GRU), Augusta, GA and King Abdulaziz University, Jeddah, KSA guide-
lines. C57BL/6J male mice (Jackson Laboratory, Bar Harbor, ME; 45 in
number; ten-weeks-old; weight ranging 25–30 g) were used for this
study. I.P injectionwas given to animalswith vehicle or freshly prepared
streptozotocin in 0.01 mol/L sodium citrate buffer, pH 4.5 (45 mg/kg)
after 4 h fast each day for 5 consecutive days. Diabetes was confirmed
by fasting blood glucose levels N250 mg/dL.

After the establishment of diabetes (2weeks), the diabetic and non-
diabetic mice were randomly divided into three subgroups: vehicle-
treated control (12 mice), vehicle-treated diabetic (13 mice) and SES-
treated diabetic subgroups (12 mice; 30 mg/kg intraperitoneally dis-
solved in 0.1% DMSO, alternate day). Four weeks after treatment, the
mouse retinawas isolated and snap frozen in liquid nitrogen and stored
at −80 °C. The mRNA level and protein expression were analyzed by
Quantitative Real Time-PCR (qRT-PCR) and Western blot, respectively.
Frozen eye sections were prepared for histology analysis.
2.3. Measurement of blood glucose

Blood glucose meter (OneTouch UltraEasy, USA) was used to moni-
tored blood glucose level.
2.4. Quantitative real time-PCR

Total RNA was isolated frommouse retina following manufacturer's
instructions (SV Total RNA Isolation kit, Promega, Madison, WI) and
RNA quality was monitored by absorbance at 260 and 280 nm (Heli-
os-Gamma, Thermo Spectronic, Rochester, NY). Reverse transcription
to cDNA was carried out using iScript reagents from Bio-Rad on a pro-
grammable thermal cycler (PCR-Sprint, Thermo Electron, Milford,
MA). Using appropriate primers (Table 1), 50 ng of cDNAwas amplified
in each qRT-PCR (Bio-Rad iCycler, ABgene reagents, Fisher scientific).
Average of GAPDH and 18S RNA was used as the internal control for
normalization.
2.5. Quantitative Western blot analysis

Mouse retinas were homogenized in modified RIPA buffer (Upstate,
Lake Placid, NY), containing 50 mM Tris, 150 mMNaCl, 1 mM EDTA, 1%
Nonidet P-40, 0.25% deoxycholate, supplemented with 40 mM NaF,
2 mM Na3VO4, 0.5 mM phenylmethylsulfonyl fluoride and 1:100 (v/v)
of proteinase inhibitor cocktail (Sigma). Insoluble material was re-
moved by centrifugation at 12,000 ×g at 4 °C for 30 min. Protein
concentration was determined by DC Protein Assay (Bio-Rad, Hercules,
CA). 100-μg protein was loaded on SDS-PAGE (4–20% gradient
gel, Pierce, Rockford, IL) and subsequently transferred to PVDF mem-
brane and probed with specific antibodies. iNOS protein was detected
on the membrane as previously described (Ahmad et al., 2012).
The same membrane was re-probed with actin as internal control.
Quantification of immunoreactivity was done by densitometry (Image
J software, NIH).
2.6. Immunostaining

Briefly, frozen eye sections of 7 μm thicknesswere fixedwith 4% PFA
for 20 min at RT and washed 3 times with 1× PBS. After washing, eye
sections were blocked with Dako serum-free protein blocker and incu-
bated overnight at 4 °C with primary antibody (anti-ICAM-1 antibody
with 1:100 dilution; Santa Cruz Biotechnology, CA; Cat No. sc-107).
Sectionswere then brieflywashedwith 1× PBS and incubatedwith sec-
ondary antibody (FITC green; 1:500). Stained sections were examined
under the fluorescent microscope. Specificity of the reaction was con-
firmed by omitting the primary antibody, or by using non-immune
IgG. Iba-1 staining was done by immunohistochemistry. Frozen retinal
sections were fixed and treated with 0.3% H2O2 followed by the
Mouse immunoglobulin Blocking Solution (M.O.M, Vector Laboratories,
Burlingame, CA). Sections were incubated with Iba-1 antibody (1:100;
Wako Pure Chemical, Wako, TX) for 16 to 20 h at room temperature
followed by M.O.M. biotinylated anti-mouse Ig reagent (1:250). DAB
(3,3′-diaminobenzidine) was used as substrate for color development.
The pictures were taken under the microscope.
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2.7. Statistics

Data were analyzed by GraphPad PRISM software. The results are
expressed as mean ± SD. Differences among experimental groups
were evaluated by analysis of variance (one-way ANOVA), and the sig-
nificance of differences between groups was assessed by the posthoc
test (Newman–Keuls multiple comparison). Significance was defined
as P b 0.05.

3. Results

3.1. Effect of sesamin (SES) on body weight and blood glucose levels

Diabetes caused a significant increase of blood glucose level and
significant reduction of body weight as compared to control group.
Treatment with antioxidant compound sesamin (SES) significantly de-
creased blood glucose level and increased body weight of mice as com-
pared to diabetic mice (Fig. 1A, B). These results demonstrated that the
use of SES might ameliorate glucose level and body weight in diabetic
mice.

3.2. Sesamin (SES) ameliorated retinalmicroglia activation in diabeticmice

Retinal microglia are known to release cytokines upon activation
and earlier findings suggest that excess release of cytokines activates
MAP Kinase pathway that leads to inflammatory gene activation. There-
fore, the role ofmicroglia activation is one of themain targets in diabetic
retinopathy research. To test the possible mechanisms by which
SES could attenuate retinal injury in diabetic mice, we investigated
the effect of SES treatment on microglia activation by measuring
Iba1 (activated microglia marker) expression level. We observed
increased of Iba1 immunostaining in retinal section of diabetic mice
as compared with control group. However, Iba1 staining was signifi-
cantly reduced in the SES-treated diabetic mice as compared with
vehicle-treated diabetic mice (Fig. 2A). Further, the mRNA level of
Iba1 was significantly reduced in the retinas of SES-treated diabetic
mice as compared with vehicle-treated diabetic mice (Fig. 2B). These
data indicate that SES treatment may reduce microglia activation in
diabetic retina.

3.3. Sesamin (SES) treatment attenuated retinal inflammation in diabetic
mice

Next, we examined the effect of SES on inflammatorymarkers in di-
abeticmice retina. To show the results, we examined themRNA levels of
TNF-α and ICAM-1 in retina. The mRNA levels of TNF-α and ICAM-1
were markedly increased in the retinal samples of 22-weeks old
Fig. 1. Effect of sesamin (SES) treatment on bodyweight (g) and blood glucose level in DR. A–B
Data shown are the mean ± SD (n = 6). *P b 0.01, **P b 0.001, ***P b 0.0001.
diabetic mice as compared with control group, as revealed by qRT-PCR
(Fig. 3A, B). In addition, ICAM-1 immunostaining was significantly in-
creased in diabetic retina as compared to control group (Fig. 4A,B).
The SES treatment reduced the mRNA levels of TNF-α and ICAM-1 in
treated mice as compared to diabetic group. Results exhibit that SES
treatmentmay reduce the release of inflammatory cytokines in diabetic
retina.

3.4. Sesamin (SES) reduced diabetic induced up-regulation of iNOS

Scientific evidences have shown that iNOS plays an important role in
diabetic retinal injury and is known to generate reactive nitrogen spe-
cies. Diabetic mice showed a significant increase in mRNA and expres-
sion levels of iNOS as compared with control group. SES-treated
diabeticmice showed decreased iNOSmRNA and protein levels as com-
pared with vehicle-treated diabetic mice (Fig. 5A,B).

4. Discussion

Diabetic retinopathy (DR) is amicrovascular complication of diabetes
that affects the blood vessels of retina, leading to vision loss (Ahmad
et al., 2012; Elsherbiny et al., 2013a,b). Chronic hyperglycemia is believed
to play the primary role in the pathogenesis of retinal damage in DR. The
biochemicalmechanisms associatedwith hyperglycemic-inducedDR are
multifactorial (Hong et al., 2013; Khan et al., 2010). There is considerable
published evidence that both inflammation and oxidative stresses are
potential biochemical mechanisms in hyperglycemic-induced cell dam-
age (Ahmad et al., 2006; Baluchnejadmojarad et al., 2013; Bournival
et al., 2012a; Elsherbiny et al., 2013a,b; Mitsuhashi et al., 2013; Zheng
et al., 2015). In this study, the results demonstrate that the treatment
of antioxidant compound SES inhibits the progression of diabetic reti-
nopathy through hypoglycemic, anti-inflammatory and antioxidant
mechanisms. Further, SES treatment helps in lowering of blood glucose
levels of treated mice as compared to untreated diabetic group. Our re-
sults are in accordance with other findings where it has been shown
that hypoglycemic activity of SES in type 2 diabetic animal models
through attenuating insulin resistance (Hong et al., 2013; Song et al.,
2012). In addition, another study suggested that SES treatment has pro-
tective effect against STZ induced damage in pancreatic β cells through
antioxidant mechanisms (Shen et al., 2013).

Microglia is resident immune cells in the retina. Under pathological
conditions, microglia becomes activated and participates in immune
and inflammatory reaction (Ahmad et al., 2013, 2014a; Kumar et al.,
2013). Microglial activation has been recognized as a neuropathological
characteristic of diabetic retina, which leads to the release of soluble cy-
totoxins that contribute to neuronal and vascular cell death and ulti-
mately diabetic retinopathy (Hong et al., 2013). However, several
) Cont; control group, DR; diabetic retinopathy group, SES; sesamin treated diabetic group.

Image of Fig. 1


Fig. 2. Sesamin (SES) treatment ameliorated retinal microglia activation in diabetic mice. A) Effect of SES on Iba-1 expression in the diabetic mouse retina determined by
immunohistochemistry, Scale bar: 50 μm, GCL; ganglion cell layer, INL; inner nuclear layer, ONL; outer nuclear layer. B) Determined by RT PCR analysis; GAPDH and 18S were used as
reporter genes. The results represent the means ± SD of fold changes calculated using expression level, normalized to the level of the control non-diabetic mice (n = 6). Data shown
are the mean ± SD. *P b 0.01, **P b 0.001, ***P b 0.0001.
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studies have reported a dramatic increase of the number and activity of
microglia in experimental diabetic retinopathy (Kettenmann et al.,
2011; Lei et al., 2012). Consistent with earlier studies, we previously re-
ported similar changes in morphology and antigen-expression patterns
of retinal microglia cells during diabetes and traumatic optic neuropa-
thy condition (Ahmad et al., 2014a; Elsherbiny et al., 2013a; Zeng
et al., 2008). In this study, we investigated the effect of SES onmicroglia
activation and found that the SES treatment significantly decreased the
expression of Iba-1, amarker of microglia activation as compared to un-
treated diabetic group. That indicates that SESmay inhibit microglia ac-
tivation in DR.

TNF-α is robustmarker of inflammation that exhibited potential role
in diabetic-induced retinal injury. Earlier studies have been shown that
Fig. 3. Sesamin (SES) treatment attenuated retinal inflammation in diabetic mice. A) Effect of S
levels in the diabeticmouse retina. GAPDH and 18Swere used as reporter genes. The results rep
level of the control non-diabetic mice (n = 6). Data shown are the mean ± SD. *P b 0.01, **P b
TNF-α levels are increased in the diabetic retina (Chen et al., 2002;
Fulzele et al., 2015; Ibrahim et al., 2011a,b; Krady et al., 2005). In the
present study, SES treatment reduced TNF-α mRNA levels in retinas
of diabetic mice as compared to untreated group. It was reported
that TNF-α contributes to blood retinal barrier breakdown in DR by
manymechanisms including:mediating death/apoptosis of retinal neu-
ronal and endothelial cells (Elsherbiny et al., 2013b) and mediating
leukostasis in the retinal vasculature (Behl et al., 2008). Thus, reducing
TNF-α mRNA level by SES may have vascular benefits in DR.

Leukocyte adhesion to retinal vasculature is involved in pathophys-
iology of DR and resulted in blood–retinal barrier breakdown, capillary
occlusion, endothelial cell injury and death, suggesting a significant
role of adhesion molecules in pathogenesis of DR (Joussen et al.,
ES on TNF-αmRNA levels in the diabetic mouse retina. B) Effect of SES on ICAM-1 mRNA
resent themeans± SDof fold changes calculated using expression level, normalized to the
0.001, ***P b 0.0001.

Image of Fig. 2
Image of Fig. 3


Fig. 4. Effect of sesamin (SES) treatment on ICAM-1 expression in the diabetic mouse retina. A) ICAM-1was determined by immunofluorescence staining. Scale bar: 20 μm, GCL; ganglion
cell layer, INL; inner nuclear layer, ONL; outer nuclear layer. B) ICAM-1 fluorescent color intensity. Data shown are the mean ± SD (n = 6). *P b 0.01, **P b 0.001, ***P b 0.0001.
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2002). Of these adhesionmolecules, ICAM-1 was shown to be of funda-
mental importance to the recruitment andmigration of leucocytes at in-
flammation sites (Joussen et al., 2009). Our results suggest that ICAM-1
mRNA and expression levels in diabetic retina were decreased by
SES treatment. Previous study demonstrated a similar effect of SES
on TNF-α-induced ICAM-1 expression levels in endothelial cells
through attenuating extracellular signal-regulated kinase/p38 pathway
(Vinores et al., 2007).

iNOS is cytokine-inducible nitric oxide (NO) synthase that synthesize
NO from L-arginine. It has been shown that iNOS plays a crucial role in
retinal neovascular disease and retinal degeneration (Serra et al.,
2012). Evidence suggested that iNOS levels in the diabetic retina are el-
evated due to extensive production by endothelial cells and pericytes
Fig. 5. Sesamin (SES) treatment reduced iNOS levels in diabeticmouse retina. A) Retinal express
represent the means ± SD of fold changes calculated using expression level, normalized to the
densitometry analysis of retinal iNOS expression (n = 6). Data shown are the mean ± SD. *P b
(Noda et al., 2012). In diabetic retinal endothelium, iNOS was reported
to be the main enzyme involved in NO mediated up-regulation in
ICAM-1 expression and subsequent leukostasis (Wu et al., 2010). More-
over, superoxide anions can react with NO to produce the potent oxi-
dant peroxynitrite, which has been implicated in the development of
diabetic retinal injury (Sennlaub et al., 2002). In addition, iNOS was re-
ported to play a crucial role in retinal apoptosis in ischemic proliferative
retinopathy (Serra et al., 2012). However, selective iNOS inhibition is
able to inhibit vitreal neovascularization and to protect the hypoxic ret-
ina from degeneration (Kowluru et al., 2003). Further, many reports
point to the inhibitory effect of SES on iNOS activation in various animal
models (Baluchnejadmojarad et al., 2013; Kowluru, 2003; Lahaie-Collins
et al., 2008; Leal et al., 2007; Lei et al., 2012; Sennlaub et al., 2001). In the
ion of iNOSmeasured by RT-PCR. GAPDH and 18Swere used as reporter genes. The results
level of the control non-diabetic mice (n = 4–6). B–C) Representative Western blots and
0.01, **P b 0.001, ***P b 0.0001.

Image of Fig. 4
Image of Fig. 5


Fig. 6. Hypothetical mechanism of neurodegeneration in diabetic retinopathy and its
attenuation by sesamin treatment.
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present investigation,we hypothesized that SES treatmentwould have a
similar effect in diabetic retina. In contrast, the results of our study indi-
cated a decrease in iNOS mRNA and protein levels in treated diabetic
mice as compared with untreated group, which suggests that SES has a
protective role in diabetic retina that may be attributed to its inhibitory
effect on synthesis of tissue damaging NO.

In conclusion, we found that SES treatment significantly reduced the
expression levels of inflammatory markers, blood glucose level and in-
creased bodyweight. This study is an agreementwith our earlier reports
where we have reported that sesame oil and its active constituents SES
may ameliorate oxidative stress and inflammation in neurodegenera-
tive disorders (Ahmad et al., 2006, 2012, 2014b; Khan et al., 2010). In-
terestingly, one of the recent studies has shown that SES prevents
impairment of skeletal muscle mitochondrial function in diabetic mice
model (Takada et al., 2015). Overall, this study demonstrates that SES
treatment may be useful in attenuating the progression of diabetic ret-
inopathy by hypoglycemic and anti-inflammatory mechanisms, and
here we have shown a graphical presentation (Fig. 6) to understand
the beneficial role of SES in DR.
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