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INTRODUCTION

Cancer and many other major diseases are often 
caused by varieties of subtle modifications in biological 
sequences, typically by various types of post-translational 
modification (PTM or PTLM) in protein [1, 2], post-
replication modification (PTRM) in DNA [3] and post-
transcription modification (PTCM) in RNA [4]. In 
order to reveal the pathological mechanisms of these 
diseases and find new and revolutionary strategies to treat 
them, considerable efforts have been made in order for 

identifying the possible modified sites in proteins (see, e.g., 
[5–13]), DNA [14, 15], and RNA sequences [16, 17]. For 
a systematic introduction about this, see two recent review 
articles [13, 15].

In vivo, PTM is one of the most efficient biological 
mechanisms for regulating physiology as well as for 
expanding the genetic code. But when body’s well-designed 
proteolysis or other repair systems are overwhelmed by 
excess reactive oxygen species (ROS) [18], the oxidative 
stress may occur [18], weakening the damage-repairing 
ability. This may also bring about varieties of PTMs on 
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ABSTRACT
Carbonylation is a posttranslational modification (PTM or PTLM), where a 

carbonyl group is added to lysine (K), proline (P), arginine (R), and threonine (T) 
residue of a protein molecule. Carbonylation plays an important role in orchestrating 
various biological processes but it is also associated with many diseases such as 
diabetes, chronic lung disease, Parkinson’s disease, Alzheimer’s disease, chronic 
renal failure, and sepsis. Therefore, from the angles of both basic research and drug 
development, we are facing a challenging problem: for an uncharacterized protein 
sequence containing many residues of K, P, R, or T, which ones can be carbonylated, 
and which ones cannot? To address this problem, we have developed a predictor 
called iCar-PseCp by incorporating the sequence-coupled information into the general 
pseudo amino acid composition, and balancing out skewed training dataset by Monte 
Carlo sampling to expand positive subset. Rigorous target cross-validations on a same 
set of carbonylation-known proteins indicated that the new predictor remarkably 
outperformed its existing counterparts. For the convenience of most experimental 
scientists, a user-friendly web-server for iCar-PseCp has been established at http://
www.jci-bioinfo.cn/iCar-PseCp, by which users can easily obtain their desired results 
without the need to go through the complicated mathematical equations involved. 
It has not escaped our notice that the formulation and approach presented here can 
also be used to analyze many other problems in computational proteomics.
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proteins, including nitration, carbonylation, sulfhydration 
and glutathionylation [19]. Among these PTMs, the 
protein carbonylation has been used as a biomarker for 
severe oxidative protein damage due to its relative early 
formation, stability, and irreversibility [20, 21]. Actually, 
protein carbonylation is an early stage of diseases induced 
by external oxidative stress, aging and obesity [22, 23]. 
It may cause numerous major human diseases, including 
Alzheimer’s disease, diabetes, Parkinson’s disease, 
chronic renal failure, chronic lung disease, sepsis and so 
forth [24, 25]. Therefore, the information of carbonylation 
sites in proteins is indispensable not only for in-depth 
understanding many important biological processes but also 
for precisely aiming targets in developing effective drugs 
against the aforementioned diseases.

Mass spectrometry is one of the most common 
techniques to analyze the carbonyl level of a protein 
and determine its carbonylation sites [26, 27]. So far 
four types of amino acid residues have been found more 
prone to carbonylation; they are lysine (K), proline (P), 
arginine (R), and threonine (T) [24, 28–30]. But it would 
take much longer time and need more labors to utilize the 
conventional experimental techniques alone to determine 
the carbonylation sites in proteins [27, 31]. Facing the 
rapid growth of biological sequences, we are challenged to 
develop automated methods as a complimentary approach 
to experimental methods. 

Actually, some investigators have made efforts to do 
so. Maisonneuve et al. [29], based on their spectrometry 
analysis, proposed some empirical rules to identify the hot 
spots of carbonylation. Recently, Lv et al. [32] and Xu et al.  
[33] developed two different bioinformatical tools to 
predict the protein carbonylation sites. These methods did 
have contribution in stimulating the development of this 
area. Since the topic’s importance as well as the urgency of 
demanding more powerful high throughput tools in this area, 
further efforts aiming at prediction of protein carbonylation 
sites are definitely needed. 

Here, we are to develop a new and more powerful 
predictor by (1) using the Monte Carlo sampling approach to 
optimize the training dataset, (2) incorporating the vectorized 
sequence-coupling model into the general PseAAC, and (3) 
installing the random forest (RF) algorithm to operate the 
prediction system.

As shown in many recent relevant papers [11, 12, 
14, 17, 34–40], to establish a biological sequence-based 
statistical predictor that not only can be easily used by most 
experimental scientists to get their desired results but also can 
inspirely stimulate theoretical scientists to create various other 
prediction methods, we should observe the Chou’s 5-step rules 
or guidelines [41]: (1) benchmark dataset preparation; (2) 
mathematical representation of biological sequence samples; 
(3) calculation algorithm; (4) cross-validation; (5) web-server 
establishment. Below, let us to address the five guidelines one-
by-one. To match the rubric style of the Oncotarget journal, 
however, the order in addressing them may be changed. 

RESULTS AND DISCUSSION

A novel web-server predictor and its user guide

A new and more powerful predictor, called iCar-
PseCp, has been established for predicting the protein 
carbonylation sites. Moreover, to maximize users’ 
convenience, the point-to-point instructions are given below.

(1) Click the web-server at http://www.jci-bioinfo.
cn/iCar-PseCp, the top page of the iCar-PseCp will be 
prompted on your computer screen (Figure 1). 

(2) In the input box (Figure 1), enter your query 
protein sequences, which can be done by either typing 
or copying/pasting manner. The entered query protein 
sequences should be in the FASTA format. Not familiar 
with FASTA? Just click the button of Example. 

(3) You can see the prediction results by clicking 
the Submit button. If you use the Sequence_K in the 
Example window as the input and check on the K button, 
after 15 seconds or so since your submitting, you will see 
the following on your screen: Sequence_K contains 9 K 
residues, of which 5 are predicted to be of carbonylation site 
and they are at the sequence positions 2, 14, 41, 68 and 95. 
If you use the Sequence_P as the input and check on the 
P button, you will see: Sequence_P contains 10 P residues, 
of which 5 are of carbonylation site and at positions 95, 
122, 142, 145, and 149. If you use the Sequence_R as the 
input and check on the R button, you will see: Sequence_R 
contains 8 R residues, of which 3 are of carbonylation 
site and at the positions 14, 41, and 75. If you use the 
Sequence T as the input and check on the T button, you 
will see: Sequence_T contains 7 T residues, of which 1 is 
of carbonylation site and at the positions 14. Compared with 
experimental observations, the above (9 + 10 + 8 + 7) = 34 
predicted results contain no false positive result ( N-

+ = 0 ) 
but 5 false positive results ( )N+

− = 5 , which are the 
2nd and 13th K residues in sequence_K, the 142th and 
145th P residues in sequence_P, and the 75th R residue 
in sequence_R. In other words, the total number of 
carbonylation sites involved in the above predictions is 
N+ = 3 + 3 + 1 + 1 = 8, while the total number of non-
carbonylation sites investigated is N− = 6 + 7 + 6 + 6 = 25.  
Substituting these data into Eq.9, we have Sn = 100%,  
Sp = 80.00% and Acc = 84.80%, and MCC = 0.7018, quite 
consistent with the rates reported in Table 1 via the rigorous 
cross validation on the 250 benchmark proteins. 

(4) If you have a lot of query protein sequences and 
need a lot of computational time, you can choose to use 
the batch prediction. To do so, just use the Browse button 
to select the desired file (in FASTA format of course) and 
follow the online instruction.

(5) The benchmark dataset used in this study is 
available by clicking the button of Supporting Information 
on the top of Figure 1.

(6) To see the key papers used to develop this server, 
just click on the button of Citation.
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Result comparison and analysis

The success scores achieved by the iCar-PseCp 
predictor via the 10-fold target cross validation for K-, 
P-, R-, and T-type carbonylation are shown in Table 1. 
Meanwhile, the corresponding rates by PTMPred [33] and 
CarSpred [32] are also listed there. As we can see from 
Table 1, compared with its counterparts, although the Acc 
values obtained by the iCar-PseCp are within the ± 4%, its 
Sn and Sp values are more than 20% and 5–9% higher than 
those by PTMPred and CarSpred, indicating that the results 
predicted by the previous methods [33–34] contain much 
more false negative and positive events. Particularly, the 
MCC values achieved by iCar-PseCp are about 2 or 3 times 
higher than those of its counterparts, indicating that the new 
proposed predictor is significantly more stable. 

Graphical approach is a useful vehicle for analyzing 
complicated biological systems as demonstrated by a 
series of previous studies (see, e.g., [42–51]. Here, to 
provide an intuitive comparison, the graph of Receiver 
Operating Characteristic (ROC) [52, 53] was utilized to 
show the advantage of iCar-PseCp over the PTMPred [33] 

and CarSpred [32]. In Figure 2 the red and green graphic 
lines are the ROC curves for the PTMPred and CarSpred, 
respectively; while the blue graphic line for the proposed 
predictor iCar-PseCp. The greater the area under the AUC is, 
the better the predictor will be [52–53]. As we can see from 
Figure 2, the area under the blue curve is remarkably greater 
than that under the red or green line, once again indicating 
that the proposed predictor is indeed much better than 
PTMPred and CarSpred predictors. Therefore, iCAR-PseCp 
will become a very useful bioinformatics tool for relevant 
basic research and drug development as well.

Why can the proposed method enhance the prediction 
quality so significantly? First, the coupling effects among 
the amino acids around the carbonylation sites are taken 
into account via the conditional probability approach, 
which has been proved to be indeed very useful in a 
series of previous studies [57–60]. Second, the predictor 
is trained by a balanced benchmark dataset via Monte 
Carlo sampling, and hence many false prediction events 
as occurring in the cases of PTMPred [33] and CarSpred 
[32] trained by very imbalanced and skewed datasets can 
be completely avoided.

Figure 1: A semi-screenshot of the top-page for the web-server iCar-PseCp at http://www.jci-bioinfo.cn/iCar-PseCp.
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Table 1: A comparison of the proposed predictor with the existing methods based on the 10-fold 
cross-validation on the same 250 carbonylated proteins

Predictor Metrics and 
graph

Type of carbonylation
K P R T

PTMPreda

Acc (%)d

88.59 82.93 86.64 88.39
CarSpredb 87.22 82.93 86.22 86.61

iCar-PseCpc 84.43 86.79 84.23 86.17
PTMPreda

MCCd

0.1892 0.2573 0.1878 0.2186
CarSpredb 0.2268 0.2331 0.2245 0.2040

iCar-PseCpc 0.5906 0.6006 0.6076 0.6185
PTMPreda

Sn (%)d

23.45 21.43 20.02 22.38
CarSpredb 23.17 25.34 25.47 21.39

iCar-PseCpc 45.18 48.20 46.67 50.68
PTMPreda

Sp (%)d

92.99 93.20 90.99 91.36
CarSpredb 92.43 93.28 93.39 93.42

iCar-PseCpc 99.25 98.54 99.57 98.58
PTMPreda

AUCe

0.6858 0.6903 0.5981 0.6563
CarSpredb 0.6849 0.7163 0.7158 0.7134

iCar-PseCpc 0.8728 0.8484 0.8668 0.8603
aThe predictor developed in [33], where ξ = 13; i.e. the sample length is 27. 
bThe predictor developed in [32], where the sample length was not fixed. 
cThe predictor proposed in this paper.
dSee Eq.9 for the definition of metrics. 
eThe area under the curve of Figure.2; the greater the AUC value is, the better the corresponding predictor will be [52, 53].

Figure 2: The intuitive graphs of ROC curves to show the performance of PTMPred , CarSpred, iCar-PseCp, respectively, for the 
case of the center residue is (A) K, (B) P, (C) R, and (D) T. See the main text for further explanation.
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MATERIALS AND METHODS

Benchmark dataset

The data used in the current study was derived 
from the 230 carbonylated protein sequences from human 
[26, 61–67] and 20 carbonylated protein sequences from 
Photobacterium and Escherichia coli [29, 63, 68, 69]. 

For facilitating description later, the Chou’s peptide 
formulation was adopted. It was used for studying 
enzyme specificity [57], signal peptide cleavage sites [70], 
hydroxyproline and hydroxylysine sites [8], methylation 
sites [7], nitrotyrosine sites [9], protein-protein interaction 
[71], and protein-protein binding sites [72]. According to 
Chou’s scheme, a potential carbonylation site-containing 
peptide sample can be generally expressed by
Pξ ξ ξ ξ ξ( ) ( ) ( ) = − − − − − + + + − +R R R R R R R R1 2 1 1 2 1   (1)
where the symbol   denotes the single amino acid code 
K, P, R, or T, the subscript ξ is an integer, R−ξ represents 
the ξ-th upstream amino acid residue from the center, the 
R+ξ the ξ-th downstream amino acid residue, and so forth. 
The (2ξ + 1) -tuple peptide sample Pξ( ) can be further 
classified into the following two categories:

P
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where Pξ
+ ( ) denotes a true carbonylation segment with 

K, P, R, or T at its center, Pξ
− ( )  a false segment with K, 

P, R, or T at its center, and the symbol ∈ means “a member 
of” in the set theory.

In literature the benchmark dataset usually consists 
of a training dataset and a testing dataset: the former is 
used for training a model, while the latter for testing the 
model. But as pointed out in a comprehensive review [73], 
there is no need to artificially separate a benchmark dataset 
into the two parts if the prediction model is examined by 
the jackknife test or subsampling (K-fold) cross-validation 
since the outcome thus obtained is actually from a 
combination of many different independent dataset tests. 
Thus, the benchmark dataset ξ � ( )  for the current study 
can be formulated as
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where the positive subset ξ
+ ( )  only contains the 

samples of true carbonylation segments Pξ
+ ( ) , and the 

negative subset ξ
− ( )  only contains the samples of false 

carbonylation segments Pξ
− ( )  (see Eq.2); while 

∩

  
represents the symbol for “union” in the set theory.

The detailed procedures to construct the benchmark 
dataset are as follows. (1) As done in [74], slide the (2ξ + 1) 
-tuple peptide window along each of the aforementioned 

230 + 20 = 250 protein sequences used by [32], and 
collected were only those peptide segments that have K, P, 
R, and T at the center. (2) If the upstream or downstream 
in a protein sequence was less than ξ or greater than L−ξ 
where L is the length of the protein sequence concerned, 
the lacking amino acid was filled with a dummy residue 
X. (3) The peptide segment samples thus obtained were 
put into the positive subset ξ

+ ( )  if their centers have 
been experimentally annotated as the carbonylation sites; 
otherwise, into the negative subset ξ

− ( ) . (4) Using the 
CD-HIT software [75], the aforementioned samples were 
further subject to a screening procedure to winnow those 
that had ≥ 30% pairwise sequence identity to any other in a 
same subset. 

Note that the length of peptide samples and their 
number thus generated would depend on the ξ value. 
But preliminary tests had indicated that it would be 
most promising when ξ = 7 or the sample’s length was   
2ξ + 1 = 15. Accordingly, hereafter we only consider 
the case of ξ = 7; i.e., the samples with 15 amino acid 
residues. Thus, the benchmark datasets thus obtained for 
ξ= ( )7 K ,  ξ= ( )7 P ,  ξ= ( )7 R ,  and ξ= ( )7 S  are given in 
Supporting Information S1, S2, S3, and S4, respectively. 
Listed in Table 2 is a summary of their sizes. 

Incorporate sequence-coupled information into 
general pseudo amino acid composition 

With the avalanche of biological sequence generated 
in the post-genomic age, one of the most important 
problems in computational biology is how to formulate a 
biological sequence with a discrete model or a vector, yet 
still considerably keep its sequence order information or 
essential feature. This is because all the existing machine-
learning algorithms can only handle vector but not sequence 
samples, as elaborated in [15]. 

To address this problem, the pseudo amino acid 
composition [76, 77] or PseAAC was proposed. Ever since 
the concept of pseudo amino acid composition or Chou’s 
PseAAC [78–80] was proposed, it has rapidly penetrated into 
many biomedicine and drug development areas [81–83] and 
nearly all the areas of computational proteomics (see, e.g., 
[84–91] as well as a long list of references cited in [92, 93]). 

Because it has been widely and increasingly used, 
recently three powerful open access soft-wares, called 
‘PseAAC-Builder’ [78], ‘propy’ [79], and ‘PseAAC-General’ 
[92], were established: the former two are for generating 
various modes of Chou’s special PseAAC; while the 3rd one 
for those of Chou’s general PseAAC [41], including not only 
all the special modes of feature vectors for proteins but also 
the higher level feature vectors such as “Functional Domain” 
mode (see Eqs.9–10 of [41]), “Gene Ontology” mode (see 
Eqs.11–12 of [41]), and “Sequential Evolution” or “PSSM” 
mode (see Eqs.13–14 of [41]). Inspired by the successes of 
using PseAAC to deal with protein/peptide sequences, three 
web-servers [94–96] were developed for generating various 
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feature vectors for DNA/RNA sequences. Particularly, 
recently a powerful web-server called Pse-in-One [97] has 
been developed that can be used to generate any desired 
feature vectors for protein/peptide and DNA/RNA sequences 
according to the need of users’ studies.

According to the general PseAAC [41], the peptide 
sequence of Eq.1 can be formulated as

 P P Pξ ξ ξ= =
+

=
−( ) = ( ) − ( )7 7 7    (4)
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In Eq.5 p−
+

− −7 7 6( | ))R R is the conditional probability 
of amino acid R−7 occurring at the left 1st position 
(see Eq.1) given that its closest right neighbor is R−6, 
p−
+

− −6 6 5( | )R R  is the conditional probability of amino acid 
R−6 occurring at the left 2nd position given that its closest 
right neighbor is R−5, and so forth. Note that in Eq.5, only 
p−
+

−1 1( )R  and p+
+

+1 1( )R  are of non-conditional probability 
since the right neighbor of R−1 and the left neighbor of R+1 
are always   (namely Lys, Pro, Arg, or Thr, respectively). 

All these probability values can be easily derived from 
the positive training subsets taken from Supporting 
Information S1, S2, S3, and S4, respectively as done in 
[98]. Likewise, the components in Eq.6 are the same as 
those in Eq.5 except for that they are derived from the 
corresponding negative training subsets therein. 

Expanding positive samples by Monte Carlo 
approach

As we can see from the Supporting Information S1, 
S2, S3, and S4, the negative subset ξ

− ( )  in each of them 
is much larger than its corresponding positive one ξ

+ ( )  in 
number of samples. Although this might reflect the real world 
in which the non-carbonylation sites are always the majority 
compared with the carbonylation ones, a predictor trained by 
such a highly skewed benchmark dataset would inevitably 
have the bias consequence that many carbonylation sites 
might be mispredicted as non-carbonylation ones. Therefore, 
it is important to find an effective approach to minimize this 
kind of bias consequence. To realize this, we adopted the 
Monte Carlo simulation [99, 100] to expand the samples of 
positive subset. The concrete procedures are as follows.

Step 1. Suppose Pi ( )  (i = −7, −6, … , −1, +1, …, 
+6, +7; i ≠ 0) is the probability of the 20 native amino acids 
occurring at the i-th position of the carbonylation samples 
that can be derived from a training dataset in the positive 
subsets of Supporting Information S1, S2, S3, or S4, 
respectively. 

Step 2. For simplicity, let us formulate the 
probability thus obtained according to the alphabetical 
order of the single-letter code of the 20 native amino acids 
(note that the dummy amino acid X introduced in the 
Benchmark Dataset section was treated as the 21st amino 
acid); i.e.,

P

p
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Step 3. Generate a random number   between 0 
and 1; if 

Table 2: Summary of carbonylation site samples in the benchmark dataseta

Subset
Carbonylation type and number of samples

  = K   = P   = R   = T

Positive 300 126 136 121

Negative 1,949 792 847 732
aSee Eq.3 and the relevant text for further explanation.
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p p k pi
j

j
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j

ij

k
≤ ≤ ≤ ≤ =

=

−

=∑ ∑
0

1 0
0

21 0…(1 ; )  (8)

then the k-th amino acid is drawn for an expanded positive 
sample at its i-th subsite. For example, if k = 2 and i = −7, 
then the amino acid thus drawn should be C for the left 1st 
sequence position (cf. Eq.1); if k = 19 and i = −6, then the 
amino acid drawn should be W for the left 2nd sequence 
position; if k = 20 and i = +7, then the amino acid drawn 
should be Y for the right last sequence position; and so 
forth. 

Step 4. Repeat the above steps until the number of 
positive (the original plus the expanded) samples is the 
same as the negative samples.

At first glance, the rationale of the above Monte Carlo 
sampling procedure seems like a circular argument. But it 
is correct as elucidated in [54]. Particularly, these expanded 
positive samples were used only for training a model but not 
used for testing it, as well be further discussed later.

Random forests algorithm

The random forests (RF) algorithm is a powerful 
algorithm and has been used in many areas of computational 
biology (see, e.g. [11, 12, 71, 72, 101−104]). The detailed 
procedures of RF and its formulation have been very clearly 
described in [105], and hence there is no need to repeat here.

For the current study, all the involved peptide samples 
were converted into a 14-D (dimensional) vector according 
to Eq.4, and then entered into the RF operation engine as 
the input. And the output would indicate whether the center 
residue   of the query peptide is a “carbonylation site” or 
“non- carbonylation site”. Note that, in using the current 
prediction method, one must observe the self-consistency 
principle: if the center residue of a query peptide is = K 
then the corresponding training data must be taken from 
ξ= ( )7 K  if the center residue of a query peptide is  = 
P, then the training data must be taken from and ξ= ( )7 P ;  
and so forth (see Eq.3). 

The predictor established via the above procedures is 
called “pCar-PseCp”, where “i” stands for identify”, “Car” 
for “carbonylation site”, “Pse” for “general PseAAC”, and 
“Cp” for “sequence coupled effect”. 

As pointed out in the Introduction section, one of the 
keys in establishing a useful predictor is how to properly 
evaluate its anticipated success rates. To realize this, we need 
to consider the following two things: one is what metrics 
or scales should be adopted to quantitatively measure its 
prediction quality; the other is what validation method 
should be utilized to calculate or derive the metrics values. 
Below, we are to address the two problems.

A set of four metrics

The following four metrics are usually used in 
literature to measure the quality of binary classification: (1) 
overall accuracy or Acc; (2) Mathew’s correlation coefficient 
or MCC; (3) sensitivity or Sn; and (4) specificity or Sp (see, 

e.g., [106]). Unfortunately, the conventional formulations 
for the four are not intuitive and that most experimental 
scientists feel difficult to understand them, particularly 
for the one of MCC. Interestingly, by using the Chou’s 
symbols and derivation in studying signal peptides [107], 
the aforementioned four metrics can be easily converted into 
a set of following equations [5, 35]:

Sn Sn

Sp Sp

Acc Acc

= − ≤ ≤

= − ≤ ≤

=∧ = −
+
+

≤ ≤

+

+

−

+

+ −

1 0 1

1 0 1

1 0

N
N
N
N

N N
N N

–

+
–

– +
–

11

1

1 1

MCC =
− +










+
−







 +

−




+

+ −

+

N
N

N
N

N N
N

N N
N

– +
–

+
–

–
+

–
+

+
–

–) )





− ≤ ≤






















1 1MCC

 (9)

where N+ represents the total number of carbonylation sites 
investigated whereas N−

+  the number of true carbonylation 
sites incorrectly predicted to be of non-carbonylation 
site; N− the total number of the non-carbonylation sites 
investigated whereas N+

−  the number of non-carbonylation 
sites incorrectly predicted to be of carbonylation site.

According to Eq.9, it is crystal clear to see the 
following. When N−

+  = 0 meaning none of the true 
carbonylation sites are incorrectly predicted to be of non-
carbonylation site, we have the sensitivity Sn = 1. When N−

+  
= N+ meaning that all the carbonylation sites are incorrectly 
predicted to be of non-carbonylation site, we have the 
sensitivity Sn = 0. Likewise, when N+

−  = 0 meaning none of 
the non-carbonylation sites are incorrectly predicted to be of 
carbonylation site, we have the specificity Sp = 1; whereas 
N+

−  = N− meaning that all the non-carbonylation sites are 
incorrectly predicted to be of carbonylation sites, we have 
the specificity Sp = 0. When N−

+ = N+
−  = 0 meaning that 

none of carbonylation sites in the positive dataset and none 
of the non-carbonylation sites in the negative dataset are 
incorrectly predicted, we have the overall accuracy Acc = 1  
and MCC = 1; when N−

+  = N+ and N+
−  = N− meaning that 

all the carbonylation sites in the positive dataset and all the 
non-carbonylation sites in the negative dataset are incorrectly 
predicted, we have the overall accuracy Acc = 0 and 
MCC = −1; whereas when N−

+  = N+/2 and N+
−  = N−/2 

we have Acc = 0.5 and MCC = 0 meaning no better than 
random guess. Therefore, using Eq.9 has made the meanings 
of sensitivity, specificity, overall accuracy, and Mathew’s 
correlation coefficient much more intuitive and easier-
to-understand, particularly for the meaning of MCC, as 
concurred recently by many investigators (see, e.g., [14, 16, 
38, 39, 71, 72, 108–113]).

Note that, however, the set of equations defined 
in Eq.9 is valid only for the single-label systems. For 
the multi-label systems whose emergence has become 
more frequent in system biology [114–116] and system 
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medicine [117], a completely different set of metrics are 
needed as elaborated in [118].

Target cross-validation

With a good set of metrics to measure the predictor’s 
quality, the next thing to consider is what kind of validation 
method should be adopted to calculate the metrics values.

The following three cross-validation methods are 
often used in statistics to derive the metrics values for 
a predictor: independent dataset test, subsampling (or 
K-fold cross-validation) test, and jackknife test [119]. 
Among these three, however, the jackknife test is deemed 
the least arbitrary that can always yield a unique outcome 
for a given benchmark dataset as elucidated in [41] and 
demonstrated by Eqs.28–32 therein. Accordingly, the 
jackknife test has been widely recognized and increasingly 
used by investigators to examine the quality of various 
predictors (see, e.g., [84–87, 120–127]). However, to 
reduce the computational time, in this study we adopted 
the K-fold cross-validation, as done by most investigators 
with SVM and random forests algorithms as the prediction 
engine.

When conducting the K-fold cross-validation for 
the current predictor iCAR-PseCp, however, some special 
consideration is needed. This is because a dataset, after 
expanding by Monte Carlo sampling, may contain many 
hypothetical positive samples. It would be fine to use 
such an expanded dataset to train a prediction model, but 
certainly not for validation. This is because the validation 
should be made on a testing dataset that only contains 
experiment-confirmed samples without any added 
hypothetical samples [14, 104]. To ensure this, a special 
cross-validation, the so-called target cross-validation [113], 
has been introduced here. During the target cross-validation 
process, only the experiment-confirmed samples are picked 
out from the testing dataset for validating and scoring [11]. 
The detailed procedures of the target K-fold cross-validation 
(without losing the generality, let us consider K = 10) can be 
described as follows.

Step 1. Before expanding the positive samples, both 
the original positive and negative subsets were randomly 
divided into 10 parts with about the same size. For example, 
for ξ= ( )7 K  in Supporting Information S1, after such 
evenly division we have 
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where the symbol 


 means that the divided 10 datasets 
are about the same in size, and so are their subsets. 

Step 2. One of the 10 sets, say ξ= ( )( )
7

1
K ,  was singled 

out as the testing dataset and the remaining nine sets as the 
training dataset. 

Step 3. Based on the training dataset, use Eqs.4–6 
to derive the sequence-coupled information. Also, based 
on the same training dataset, use Monte Carlo sampling to 
expand its positive subset making it have the same size as 
the negative subset. 

Step 4. Use the sequence-coupled information and 
the expanded training dataset obtained in Step 3 to train the 
model and perform the prediction for each of the samples 
in the testing dataset. 

Step 5. Repeat Steps 2–4 until all the 10 divided sets 
had been singled out one-by-one for testing validation. 

Step 6. Substituting the average scores obtained from 
the above 10-round tests into Eq.9 to calculate Sn, Sp, Acc, 
and MCC. 

It is crystal clear to see from the above steps that 
the validation was made only for experiment-confirmed 
samples, and that none of information from the testing 
datasets was ever used to train the predictor.

CONCLUSIONS

The iCar-PseCp predictor is a new bioinformatics 
tool for identifying the carbonylation sites in proteins. 
Compared with the existing predictors in this area, its 
prediction quality is much better, with remarkably more 
stability and less false predictions. For the convenience of 
most experimental scientists, we have provided its web-
server and a step-by-step guide, by which users can easily 
obtain their desired results without the need to go through 
the detailed mathematics. The reason of including them in 
this paper is for the integrity of the new prediction method, 
and that these techniques, such as sequence-coupled 
approach and Monte Carlo sampling, may be of use as well 
in developing other tools in computational biology. 

We anticipate that iCar-PseCp will become a 
very useful high throughput tool, or at the very least, a 
complementary tool to the existing methods for predicting 
the protein carbonylation sites. 
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