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Abstract

Background

Chronic kidney disease (CKD) is a group of heterogeneous abnormalities affecting the func-

tion and structure of the kidney and mostly further proceeds to cardiovascular damage prior

to end stage renal disease (ESRD). The oxidative insult and inflammatory mediators have

some undefined role in CKD and cardiovascular complications. It is therefore, aimed at to

pin point the predictive factors in the development of cardiovascular disorder in patients with

chronic kidney disease.

Methods

Fifty patients of CKD experiencing cardiovascular distress and twenty normal individuals hav-

ing same age and sex acted as control during these observations. Blood samples (Each 5

ml) were drawn and subjected to centrifugation for 10–15 minutes to separate the serum at

4000-5000rpm. The levels of MDA, GSH, SOD, CAT, VIT C, VIT E, IL-1, TNF-alpha, nitric

oxide (NO) and advanced oxidation protein products (AOPPs) were estimated and analyzed.
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Results

The nitric oxide levels in the CKD patients decreased significantly (13.26±1.25 ng/ml) com-

pared to controls (42.15±5.26 ng/ml). The serum vitamin E and C levels in these patients

recorded 2.15±0.25 μg/ml and 0.97±0.09 μg/ml respectively as against their assigned con-

trols which read 6.35±1.22 μg/ml and 3.29±0.25 μg/ml. Furthermore, a significantly higher

level of Malondialdehyde (MDA) as1.25±0.07 nmol/ml was observed in CKD patients viz-a-

viz relevant control. However, the serum SOD, catalase (CAT) and GSH levels in the same

patients registered a significant decline as evident from respective figures 0.07±0.002 μg/dl,

1.22±0.012 μmol/mol, and 3.25±1.05 μg/dl. The control for these was observed as0.99

±0.06 μg/dl, 3.19±0.05 μmol/mol, and 8.64±0.03 μg/dL. On the other hand, the IL-1 levels in

the CKD patients found quite higher (402.5±18.26 pg/ml). This clearly points to substantial

increase in oxidative insult and reduced NO levels leading to the renal and cardiovascular

damage.

Conclusion

Observations support the fact that the decrease in anti-oxidative capacity accompanied by

higher inflammatory mediators in CKD is indicative of oxidative stress, consequently leading

to CKD progression, in all probability to cardiovascular insult. The outcome reiterates that

strategies be designed afresh to contain CKD progression to cardiovascular complications

and ESRD. One way could be to focus on early detection of stress related to the disease. It

requires analyzing the factors related to stress, such as the one reported here. Linking these

factors with the symptoms could be a crucial step forward. And further, the disease could be

monitored in a more disciplined manner.

Introduction

CKD (Chronic kidney disease) is group of heterogeneous conditions affecting the structure

and function of kidney. Acute kidney injury, intake of nephrotoxins, weight gain, smoking

and increasing age are the factors linked to it [1]. Structural features attached like, augmentation

in glomerulosclerosis, renal vasculopathy, tubular inflammation, fibrosis, atrophy together with

presence of scar tissue, have also been thoroughly identified [2]. Earlier pathological variations

in kidney may occasionally happen in the absence of clinical presentation due to high adaptabil-

ity [3]. Notwithstanding, these physiological studies, what is more serious is CKD progression

once adaptive threshold is broken, progression to end stage renal disease is impending. Hence,

identifying its stage is imperative. For that, determining the loss of glomerular filtration rate

(GFR) is the primary clinical manifestation. The CKD acquire more serious proportion as

patients are more prone to die of cardiovascular diseases (CVD) than the actual renal failure.

The association between CKD and CVD assumes greater proportion since both have same

risk factors and the disease related circumstances in one system can adversely affect the other

system. Understandly, in the prior CKD stage, the incidence of CVD events becomes higher

could possibly due to glomerular filtration rate (GFR), aggravate the severity of CVD abnor-

malities. This is reinstated by a study, where in CKD patients with stage III and IV, the inci-

dence of CVD is 4–5 times higher than population [4]. Hypertension is a highly implicated

etiological factor also for the induction of CVD in CKD patients. It is because; sodium reten-

tion and activation of renin angiotensin system (RAS), are the underlying mechanisms get
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stressed. Also directly, hypertension causes cardiac deterioration in CKD, as the induction of

left ventricular hypertrophy takes place. And further consequently results in the decrease of

coronary reserves and capillary density, leading to coronary ischemia [5]. In CKD further, ure-

mia results in production of cyanate in the presence of hydrogen peroxide (H2O2) and myelo-

peroxidase (MPO) mediates carbamylated protein synthesis that combines with high density

lipoprotein (HDL). On its part, carbamylated HDL reduces lecithin cholesterol acyl transferase

(LCAT) activity, so important in cholesterol esterification and HDL maturation and inci-

dently, leading to CVD events in CKD patients [6].

The CKD persons are linked to the complications in cellular respiration as well–directly or

indirectly to the stress. Oxidative stress occurs either due to inability of scavenging free radicals

by antioxidative enzymes or excessive reactive oxygen species (ROS) production by electron

transport chain (ETC) in mitochondria as a primary source [7]. It is indicated by compro-

mised mitochondrial respiration in CKD patients, resulting in diminished ATP production

affecting a reduction in glutathione mediated redox balance because the glutathione formation

rate is ATP dependent [8,9]. Hence, the alternate ways to reduce such complications are vital.

The antioxidative defense system is one such mechanism, if primary antioxidants; superoxide

dismutase, catalase and glutathione peroxidase are impaired [10]. Their decrease directly

retard processing of superoxide free radical (O.
2�) as its level is increased; cell membrane is

damaged which is determined on its part by malondialdehyde (MDA) levels [11] and protein

oxidation assessed by advanced oxidation protein products (AOPPs) [10].

There is another angle to impairement of respiratory process involving enzyme dealing

NADPH–another energy carrier molecule. Tumor necrosis factor-alpha (TNF-α), interleukin

1 and 6 induce NADPH oxidase for generation of superoxide free radicals [12]. Thus, there is

dual increase in free radicals; one by reduced antioxidative capacity and two by inflammatory

mediators. There are reports for the formation of peroxynitrite (ONOO�) radicals by the reac-

tion of O.
2�free radicals to nitric oxide (NO) mediated by nitric oxide synthase (NOS) inducing

lipid peroxidation further [13]. The NO utilization, results in vasoconstriction causing vascular

injury.

In CKD, vitamins C and E (α-tocopherol) have a pivotal significance. There are non-enzy-

matic antioxidants. The synthesis of active form of vitamin C, ascorbate is dependent on

reduced glutathione which is reduced in CKD [14]. Vitamin E hampers lipid peroxidation and

is restored by vitamin C thus both are inter-dependent [15]. This is a significant example of an

antioxidant network susceptible to malfunctioning in CKD patients. Hence, the main aim of

this study is to investigate the implications of extrapolative factors useful in these diseases espe-

cially in development of cardiovascular disease in such patients also diagnosed with chronic

kidney impairements causing renal failure.

Materials and methods

Fifty patients affected with chronic kidney diseases were enrolled in the study at Jinnah Hospi-

tal, Lahore. Clinical diagnosis and history of the patients were obtained from hospital medical

records. Concurrently, twenty healthy people acted as control. Informed written consent was

obtained prior to the start of study as per Helsinki declaration. The Study was approved by

the ethical committee of the University of Lahore. Five ml of blood was drawn from each

patient and control subjects and centrifuged at 4000 rpm for serum separation and the samples

transported immediately to the laboratory for further processing. All the chemical and re-

agents used in this study were of analytical grades and purchased from Sigma chemicals Co.

(St. Louis, Mo, USA).
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Inclusion and exclusion criteria

All the patients included were at the stage V of CKD with confirmed clinical reports of glomer-

ular filtration rate (GFR) of less than 15. The CKD patients with the history of hyperextension,

cigarette smoking, and alcohol consumption were excluded from the study.

Estimation of Glutathione (GSH)

Glutathione was estimated as per protocol of Moron et al., [16]. The 100μl of serum was taken

and added 0.02M (2.4μl) EDTA and ice-cooled (10 min), Followed by addition of 2 ml distilled

water. To this 50.0μl of TCA (50%) was added and incubated on ice (10–15 min). Samples

were then centrifuged (3500 rpm). The supernatant was removed and added with 2ml of

0.15M Tris. HCl and 0.05ml (DTNB). Absorbance was measured at 412nm.

Estimation of Catalase (CAT)

Catalase (CAT) was determined by the method of Aebi, [17]. 100μl of sample was added in the

tube followed by 1.9ml of phosphate buffer and 1ml of H2O2. At last three absorbance were

measured after every minute at the wavelength of 240nm.

Determination of Superoxide Dismutase (SOD)

Superoxide dismutase (SOD) was estimated as perKakkar procedure [18]. The 100μl of sample

was taken in tube, added with 1.2ml of PBS, 100μl of phenazine methosulfate, 300μl of NBT

and 200μl of NADH. Thereafter, 100μl of Glacial acetic acid and 4ml of 2-propanol was added

further in tube and centrifuged (3000 rpm, 10 min). The absorbance was taken at 560nm.

Estimation of Malondialdehyde (MDA)

This method used Ohkawa et al Procedure [19]. 200μl of the sample was taken in the tube,to

which 200μl of 8.1% SDS and 1.5ml of 20% acetic acid was added. Later 1.5ml of 0.8% TBA

and 600μl of distilled water along with 4ml of 2-propanol was supplemented. It was centri-

fuged (4000 rpm, 10 min) and supernatant was removed for measuring absorbance at 532nm

using UV-1100 spectrophotometer.

Advanced Oxidative Protein Products (AOPPS) determination

AOPPs were estimated by the method of Witko-Sarsat et al., [20]. 200μl of sample was first

diluted with PBS, then 10μl of KI (1.16M) and 20μl of acetic acid was added. The sample cen-

trifuged (5000 rpm, 5min) and absorbance was taken at 340nm on UV-spectrophotometer.

Estimation of Nitric Oxide (NO)

Bories and Bories method employed for this purpose [21]. 100μl of Griess Reagent was added

with 300μl of sample and supplemented with 2.6ml of distilled water followed by incubation

(30 min). The absorbance was measured at 548nm.

Estimation of vitamin C

For estimation of Vitamin C method of Chinoy et al., followed [22]. 100μl of the sample was

added with 400μl of TCA 5% and centrifuged (3000 rpm, 10 min). 320μl of supernatant was

separated and added with 130μl of DTC and allowed to heat (90˚, 1hr). It was later ice-cooled

and added with 600μl of sulphuric acid then subjected to absorbance at 520nm.

Extrapolating factors linked with oxidative injury in chronic kidney disease patients
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Estimation of vitmain E

Vitamin E was estimated by the method of Rosenberg [23]. 200μl of the sample was supple-

mented with 200μl of ethanol, 200μl of n-hexane and distilled water. It was then centrifuged

(3000 rpm, 10 min) and added with 25μl of Bathophenanlhroline, 75μl of ferric chloride and

50μl of Orthophosphoric Acid. Its absorbance was taken at 536nm.

IL-1 and TNF-alpha determination

Estimation of interleukin-1 and tumor necrosis factor (TNF-alpha) were performed by using

ELIZA kits (R&D Systems, MN, USA and Affimatrix) respectively).

Statistical analysis

The Statistical Analysis was performed by SPSS version 17.0. Independent T-test was per-

formed by taking average means of group populations. Pearson’s correlation coefficient was

used to assess correlations among different variables in CKD patients. The p-values were com-

puted using one way ANOVA.

Results

The data presented in the Fig 1 shows the clear picture of different parameters estimated in the

patients suffering from CKD. When oxidative stress biomarkers were estimated, increase in

MDA levels was observed in the CKD patients as compared to controls (1.25±0.07 vs 0.07

±0.01 nmol/ml). GSH levels in the CKD patients were markedly lower (3.25±1.05μg/dL) as

compared to control (8.64±0.03 μg/dL). The serum SOD levels in the CKD patients lowered

(0.07±0.002 μg/dL) in comparison to control group (0.99±0.06 μg/dL). The catalase (CAT)

levels in CKD patients lowered in comparison to the control group (1.22±0.012 vs 3.19±
0.05 μmol/mol of protein). When the levels of vitamins were measured, serum vitamin E levels

in the CKD patients were 2.15±0.25 μg/ml while, in healthy individuals were 6.35±1.22 μg/ml.

Likewise, the level of vitamin C in CKD patients was significantly (p = 0.021) low (0.97±
0.09 μg/ml) as compare to controls (3.29±0.25 μg/ml). The IL-1 levels in the CKD patients

were estimated as 402.5±18.26 pg/ml while in the healthy individuals as 219.65±15.26 pg/ml.

The TNF-α levels in CKD were 37.26±4.26 pg/ml while in control ones 18.65±2.25 pg/ml.

When the AOPPs levels were measured in CKD patients, the value was significantly higher

(3.25±0.07 ng/ml) than those measured in controls (1.09±0.02 ng/ml). The nitric oxide levels

in the CKD patients were significantly decreased as compared to those in the controls (13.26

±1.25 vs 42.15±5.26 ng/ml). The significant findings were that reduction in NO and vitamin C

results in increase in IL-1 which mediates excessive ROS generation resulting in cardiovascular

insult in CKD patients prior to ESRD (Table 1).

Discussion

For the purpose to evaluate the relationship of oxidative stress, and pro-inflammatory cytokine

status in CKD patients which have susceptibility to progress towards cardiovascular insult; and

the correlations of ROS, antioxidants and cytokines were developed to attain the interrelation-

ship among stress markers and antioxidants; like MDA, SOD, CAT, GSH, AOPPs, vitamin E

and C were estimated. Moreover, their conclusive effects on NO, TNF-alpha and specifically

IL-1 were also determined. Compromised antioxidant mechanisms are the early and progres-

sive phenomenon in the advancement of CKD. Its progression results in atherosclerotic

changes prior to ESRD in which the main role is of disturbance in redox balance. A recent

report has shown that superoxide dismutase I (SODI) has a significant importance in
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maintaining redox balance in progressive kidney injury [24]. It can be impaired in CKD [25]

leading to increase in superoxide free radicals generation thereby resulting in cellular apopto-

sis, a process central to structural and functional loss of renal tissue and endothelial dysfunc-

tion [26]. Catalase has a prominent role in hydrogen peroxide (H2O2) reduction, which plays a

key role in anti-oxidative shield in kidney. The loss of its buffering activity results in oxidative

stress and more vigorous renal fibrosis leads to progressive renal injury [27]. However, the role

of catalase activity is still controversial in the CKD [28].

Oxidative stress resulting in mitochondrial dysfunction induces ATP depletion as well as

mitochondrial membrane potential loss. Depleted ATP synthesis causes reduction in glutathi-

one levels as its rate of formation is ATP mediated, occurring in all segments of nephron

except proximal tubule [29]. Effect of oxidative stress in the progression of disease is expressed

in the Fig 2. Thus the mitochondrial membrane potential loss results in increase in mitochon-

drial permeability which in turn releases cytochrome C (CytC), a pro-apoptotic factor. Oxi-

dative stress results in CytC dissociation from cardiolipin and forms an apoptosome with

apoptotic peptidase activating factor- I, leading to activation of caspases causing apoptosis

[30]. NADPH oxidase causes formation of superoxide free radical (O2�) from molecular oxygen

(O2) and this process is abnormally increased in phagocytic cells in the CKD [31]. There is a

two way increase in O2�, one by decrease in processing and other by increase in production. In

the CKD, increased NADPH oxidase activity causes increase in carotid intima media thickness

(IMT), can be taken as an indicator of coronary atherosclerotic events [32].

Peroxynitrite free radicals are formed when superoxide anion reacts with nitric oxide (NO),

a potent vasodilator which induces nitrosative modification of lipids, proteins and nucleic

acid [33]. L-arginine combines with oxygen in the presence of NOS to form NO. In the CKD

patients, L-arginine production from kidneys is reduced as there is reduction in renal tissue

mass [7]. Thus there is a dual decrease in NO levels, one by increase in its utilization in the

form of ONOO�and the other by reduction in its synthesis. This nitric oxide is important in

maintaining normal endothelial cell functioning and its decrease results in CVD [34]. Nitric

oxide also enhances glomerular filtration rate (GFR), renal blood flow, natriuresis and diuresis,

but its reduction leads to compromised renal performance [35]. Nitric oxide is also an inhibi-

tor of leukocyte activation, its adhesion to endothelium by reducing cell adhesion molecules

Fig 1. Biochemical profile of CKD patients experiencing CVD linked with oxidative injury and anti-inflammatory

status.

doi:10.1371/journal.pone.0171561.g001

Table 1. Result of all the variables among CKD patients and control.

Variables Control (n = 20) Patients (n = 50) p-value

Vitamin E (μg/ml) 6.35±1.22 2.15±0.25 0.026*

Vitamin C(μg/ml) 3.29±0.25 0.97±0.09 0.021*

MDA (nmol/ml) 0.07±0.01 1.25±0.07 0.046*

GSH (μg/dL) 8.64±0.03 3.25±1.05 0.033*

SOD (μg/dL) 0.99±0.06 0.07±0.002 0.011*

CAT (μmol/mol of protein) 3.19±0.05 1.22±0.012 0.035*

IL-1 pg/ml 219.65±15.26 402.5±18.26 0.002*

TNF-α (pg/ml) 18.65±2.25 37.26±4.26 0.002*

AOPPs 1.09±0.02 3.25±0.07 0.032*

Nitric Oxide (NO) 42.15±5.26 13.26±1.25 0.023*

*Significant (p-value <0.05).

doi:10.1371/journal.pone.0171561.t001
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(CAM’s) and liberation of cytotoxic vasoconstrictor products like leukotrienes (IL-1), indica-

tor of tubule interstitial fibrosis [36], (IL-6) biomarker of mesangial glomerulopathy [37] and

cytokines (TNF-alpha) [38]. The present findings indicate, NO is inversely correlated with

IL-1 (NO vs IL-1, r = -0.716��) (Table 2).These products enhance NADPH activity resulting in

O2�generation which may stimulate cytokines production by activating NF-κB and activator

protein-1 (AP-1) leading to overproduction of ROS [12]. Asymmetrical dimethylarginine

(ADMA), a potent marker of cardiovascular outcome [39] is metabolized by dimethylarginine

dimethylaminohydrolase (DDAH) which is sensitive to oxidative stress [40]. ADMA hampers

NOS activity by competing with L-arginine thereby resulting in endothelial dysfunction [41].

In the CKD, impaired antioxidative defense participate in oxidative stress which may induce

ADMA mediated processes that may expedite cardiovascular damage.

Another marker of presence of oxidative stress is oxidative dependent protein damage

which can be assessed by measuring advanced oxidative protein products (AOPPs). Serum

albumin is the primary source of AOPPs when it is attacked by hypochlorous acid free radicals

[42]. In the CKD patients, it is not only associated with renal failure progression but also very

significantly have a relationship with cardiovascular events [43]. AOPPs activate NADPH

Fig 2. Oxidative injury is enhanced by inflammatory mediators (interleukins and TNF-α) as it provokes the activity of NADPH oxidase. The resultant

superoxide anion (O2�) not only in turn further activate monocytes to release inflammatory mediators but also react with nitric oxide (NO) to form peroxynitrite

(ONOO�) which induce lipid peroxidation and NO consumption, important in proper vascular functioning and this decrease in NO increases mainly IL-1. It

generates free radicals which again stimulate monocytes. O2�processing into hydrogen peroxide (H2O2) is decreased as it is mediated by superoxide

dismutase (SOD) which is deficient in CKD. H2O2 can be converted into hypochlorite ion (OCl�) by myeloperoxidase (MPO) and into water and oxygen by

catalase which may be decreased in CKD. Reduced glutathione (GSH) not only decreases H2O2 processing but also reduces vitamin C which has three

effects, firstly it increases inflammatory mediators, secondly raises OCl�and thirdly limits vitamin E (vit E) recycling. Raised OCl�free radicals attack albumin to

produce advanced oxidative protein products (AOPPs) which promote NADPH oxidase activity thus aggravating oxidative insult. Reduction in vitamin E

results not only in increased inflammatory mediators but also in raised asymmetrical dimethylarginine (ADMA) levels which competes L-arginine (also

decreased in CKD) for nitric oxide synthase (NOS) thus reduces its levels and hampers NO formation leading to cardiovascular injury.

doi:10.1371/journal.pone.0171561.g002
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oxidase and have an ability to trigger oxidative spurt of monocytes and neutrophils so may be

involved in the inflammatory processes [44]. AOPPs levels were inversely correlated with GFR

in the CKD patients [10].

Another parameter of oxidative upset is lipid peroxidation of cell membrane resulting in

production of malondialdehyde (MDA) and its levels are increased in the CKD patients as

renal tissue mass decreases due to cell damage [11]. Oxidative stress also induces low density

lipoprotein (LDL) oxidation. So, LDL receptors cannot respond to oxidized low density lipo-

protein (ox-LDL) which is taken by macrophages resulting in the synthesis of foam cells and

atherosclerotic plaques [45].

As for the role of vitamins; vitamin C is an active water soluble antioxidant against lipid

peroxidation. It also exhibits hypochlorous acid scavenging property to reduce its devastating

effects [46]. Its deficiency in the CKD patients may be due to glutathione (GSH) deficiency as

its recycling is GSH mediated [14], we noticed an inverse correlation between GSH and vita-

min C (GSH vs Vit.C, r = -0.745��) and deduced that vitamin C deficiency may be due to

reduced dietary intake. In view of some studies, vitamin C intake cannot alter oxidative stress

and inflammatory mediators but according to our results vitamin C is inversely correlated

with IL-1 (Vit.C Vs IL-1, r = -0.706��) and directly correlated with TNF-α (Vit.C Vs TNF-α,

r = 0.705��) and reiterate that there is an inverse relationship between IL-1 and TNF-α (IL-1

Vs TNF-α, r = -0.769��). It is also capable to reduce vitamin E to its active form as its activity is

dependent on vitamin C (Vit. C Vs Vit. E = 0.876��) and further suggests that this dependence

might be deranged in the CKD [15,47,48]. Vitamin E (α-tocopherol), a potent lipid solvable

antioxidant scavenges free radicals especially nitrosative and peroxyl radical, redily hamper

lipid peroxidation [49,50]. It inhibits protein kinase C mediated NADPH oxidase activity lead-

ing to limit oxidative perturbance [51]. It is proposed that vitamin E is positively correlated

Table 2. Pearson’s correlation coefficients of different variables in CKD associated with CVD.

Variables Vit-E Vit-C MDA GSH SOD CAT IL-1 TNF-α AOPPs NO

VIT-E 1 0.876** -0.213 0.786** -0.164 0.677** 0.692** -0.677** -0.193 -0.636**

0.0034 .0117 0.0091 0.073 0.0481 0.0056 0.0030 0.0791 0.007

VIT-C 1 -0.465* -0.745** -0.191 -0.589** -0.706** 0.705** 0.161 0-.597*

0.0158 0.0019 0.1811 0.0018 0.0041 0.0965 0.0531 0.0155

MDA 1 .359* 0.145 0.311* -0.498* 0.527* 0.151 0.458*

0.0125 0.265 0.0316 0.0330 0.0132 0.560 0.015

GSH 1 0.164 0.854** -0.768** 0.811** 0.231 0.813**

0.156 0.0017 0.0026 0.0015 0.235 0.0018

SOD 1 0.189 -0.183 0.224 0.050 0.192

0.235 0.192 0.326 0.166 0.326

CAT 1 -0.739** 0.807** 0.254 0.862**

0.0043 0.0017 0.0625 0.0029

IL-1 1 -0.769** -0.252 -0.716**

0.0019 0.265 0.0027

TNF-α 1 0.222 0.840**

0.329 0.0019

AOPPs 1 0.295

0.229

NO 1

The * signifies single 0 after the decimal point, and ** tends to explain two zeros after decimal point and so highly significant.

doi:10.1371/journal.pone.0171561.t002
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with GFR as it keeps glomerular basement membrane integrity [49]. Vitamin E also impedes

pro-atherogenic events like monocyte O2�discharge, IL-I β and TNF-α synthesis, neutrophil

chemotaxis and their adhesion to the endothelium [52]. Our results indicate that vitamin E is

negatively correlated with TNF-α (Vit.E Vs TNF-α, r = -0.677��) while positively correlated

with IL-1 (Vit.E Vs IL-1, r = 0.692��) which are in contrast to relationship of vitamin C with

the inflammatory mediators. It also reduces ADMA levels as it boosts DDAH activity involved

in metabolism of ADMA thus, preserving NOS activity which results in regular cardiovascular

functioning but its reduction results in decreased NO production [53]. Contrary to it, it has

been reported that there is no relationship between ADMA and vitamin E levels [54]. In the

CKD, decreased vitamin E levels result not only in aggravation of oxidative free radicals,

inflammatory biomarkers but also reduction of vasodilator agents resulting in progression to

cardiovascular damage and ESRD.

Conclusion

The present study revealed the substantial decrease in anti-oxidative capacity accompanied by

higher inflammatory mediators in CKD induces oxidative stress. The free radicals lead to

nitrosative and chlorinative compounds which promote lipid and protein peroxidation respec-

tively. This further propagates oxidative stress resulting in CKD progression and cardiovascu-

lar impairment. Reduction in nitric oxide results in raised IL-1 resulting inflammation and

vascular injury. Independent observation shows a decrease in vitamin E which as established

earlier promotes lipid peroxidation by increasing NADPH activity and inflammatory media-

tors. Since, vitamin C resynthesizes vitamin E and its formation is regulated by glutathione,

already deficient in CKD. Thus strategies could be developed using present observations to

limit CKD progression to cardiovascular injury and ESRD and for this, focus on early detec-

tion and slowing disease progression is of prime importance. In this regard, oxidative stress

and inflammatory mediators profile must be investigated at an early stage of disease to control

devastating effects.
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