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a b s t r a c t

Succinylation is a posttranslational modification (PTM) where a succinyl group is added to a Lys (K)
residue of a protein molecule. Lysine succinylation plays an important role in orchestrating various
biological processes, but it is also associated with some diseases. Therefore, we are challenged by the
following problem from both basic research and drug development: given an uncharacterized protein
sequence containing many Lys residues, which one of them can be succinylated, and which one cannot?
With the avalanche of protein sequences generated in the postgenomic age, the answer to the problem
has become even more urgent. Fortunately, the statistical significance experimental data for succinylated
sites in proteins have become available very recently, an indispensable prerequisite for developing a
computational method to address this problem. By incorporating the sequence-coupling effects into the
general pseudo amino acid composition and using KNNC (K-nearest neighbors cleaning) treatment and
IHTS (inserting hypothetical training samples) treatment to optimize the training dataset, a predictor
called iSuc-PseOpt has been developed. Rigorous cross-validations indicated that it remarkably out-
performed the existing method. A user-friendly web-server for iSuc-PseOpt has been established at
http://www.jci-bioinfo.cn/iSuc-PseOpt, where users can easily get their desired results without needing
to go through the complicated mathematical equations involved.

© 2015 Elsevier Inc. All rights reserved.
One of the most efficient biological mechanisms for expanding
the genetic code and for regulating cellular physiology is the
posttranslational modification (PTM) of proteins [1,2]. Owing to the
importance of PTM in basic research and drug development, many
efforts have beenmadewith the aim of predicting various PTM sites
in proteins (see, e.g., Refs. [3e10] and two review articles [11,12]
published recently).
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The lysine residue in proteins can undergomany types of PTMs,
such as methylation, acetylation, biotinylation, ubiquitination,
ubiquitin-like modifications, propionylation, and butyrylation,
leading to the remarkable complexity of PTM networks.

Recently, a new type of PTM, called lysine succinylation, was
identified bymass spectrometry and protein sequence alignment. It
has been shown that lysine succinylation responds to different
physiological conditions and is evolutionary conserved [13]. In
2013, Park and coworkers [14] identified 2565 succinylation sites
from 779 proteins and revealed that lysine succinylation has po-
tential impacts on enzymes involved in mitochondrial metabolism,
including amino acid degradation, tricarboxylic acid (TCA) cycle,
and fatty acid metabolism [14]. Lysine succinylation also occurs in
histones, suggesting that it may play an important role in regulating
chromatin structures and functions as well [15,16]. Accordingly,
identification of lysine succinylation sites in proteins is no doubt a
crucial topic in cellular physiology and pathology, which can
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provide very useful information for both biomedical research and
drug development.

It is time-consuming and expensive to determine the succiny-
lation residues by purely using the experimental techniques alone.
In particular, facing the explosive growth of protein sequences in
the postgenomic age, it is highly critical to develop computational
tools for timely and effectively identifying the succinylation sites in
proteins.

Actually, some computational methods have been proposed
(see, e.g., Ref. [17]) for the aforementioned purpose. However,
because of the importance of the topic, as well as the urgency of
demanding more powerful high-throughput tools in this area,
further efforts are definitely needed to enhance the prediction
quality. The current study was initiated in an attempt to address
this problem by developing a more powerful predictor via incor-
porating a vectorized sequence-coupling model [18] into the gen-
eral form of pseudo amino acid composition (PseAAC) [19].

As shown in a series of recent publications [20e27] in compli-
ance with Chou's five-step rule [19], to establish a really useful
sequence-based statistical predictor for a biological system, we
should logically follow the five guidelines below and make them
crystal clear: (i) how to construct or select a valid benchmark
dataset to train and test the predictor, (ii) how to formulate the
biological sequence samples with an effective mathematical
expression that can truly reflect their intrinsic correlation with the
target to be predicted, (iii) how to introduce or develop a powerful
algorithm (or engine) to operate the prediction, (iv) how to prop-
erly perform cross-validation tests to objectively evaluate its
anticipated accuracy, and (v) how to establish a user-friendly web-
server that is accessible to the public. Below, we address the
aforementioned five procedures one by one.
Fig.1. Schematic illustration to show the mirror images of the x residues for the N
terminus (A) and the C terminus (B). The red symbol ⇔ represents a mirror, and the
real peptide segment is colored in black, whereas its mirror image is colored in blue.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Materials and methods

Benchmark dataset

The benchmark dataset used in this study was derived from the
CPLM, a protein lysine modification database [28]. It contains 2521
lysine succinylation sites and 24,128 non-succinylation sites
determined from 896 proteins [28]. All of the corresponding pro-
tein sequences were derived from the UniProt [29] database. For
facilitating description later, Chou's peptide formulation was
adopted. It was used for studying signal peptide cleavage sites [30],
HIV protease cleavage sites [18], and proteineprotein interaction
[25]. According to Chou's scheme, a potential succinylation site-
containing peptide sample can be generally expressed by

PxðKÞ ¼ R�xR�ðx�1Þ/R�2R�1KRþ1Rþ2/Rþðx�1ÞRþx; (1)

where the centerK represents “lysine,” the subscript x is an integer,
R�x represents the x-th upstream amino acid residue from the
center, Rþx represents the x-th downstream amino acid residue, and
so forth. The ð2xþ 1Þ-tuple peptide sample PxðKÞ can be further
classified into the following categories:

PxðKÞ2
(
Pþx ðKÞ; if its center is a succinylation site
P�x ðKÞ; otherwise ; (2)

where Pþx ðKÞ denotes a true succinylation segment with lysine at its
center, P�x ðKÞ denotes a false succinylation segment with lysine at
its center, and the symbol2means “amember of” in the set theory.

As elaborated in a comprehensive review [31], there is no need
at all to separate a benchmark dataset into a training dataset and a
testing dataset if the predictor to be developed will be tested by the
jackknife test or the subsampling (K-fold) cross-validation test
because the outcome obtained in this way is actually from a com-
bination of many different independent dataset tests. Thus, the
benchmark dataset Sx for the current study can be formulated as

Sx ¼ Sþ
x ∪S

�
x ; (3)

where the positive subset Sþ
x contains only the samples of true

succinylation segments Pþx ðKÞ and the negative subset S�
x contains

only the samples of false succinylation segments P�x ðKÞ (see Eq.
(2)), whereas

S
represents the symbol for “union” in the set theory.

Because the length of peptide sample PxðKÞ is 2xþ 1 (see Eq.
(1)), the benchmark dataset with a different x value will contain
peptide segments with a different number of amino acid residues,
as illustrated below:

The length of peptide samples in Sx

¼

8>>>>>><
>>>>>>:

19 amino acid esidues; if x ¼ 9
23 amino acid esidues; if x ¼ 11
27 amino acid esidues; if x ¼ 13
31 amino acid esidues; if x ¼ 15
35 amino acid esidues; if x ¼ 17
« «

: (4)

The detailed procedures to construct Sx are as follows. First, as
done in Ref. [32], slide the ð2xþ 1Þ-tuple peptide window along
each of the 896 protein sequences taken from Ref. [28], and only
those peptide segments that have K (Lys or lysine) at the center (see
Eq. (1)) were collected. Second, if the upstream or downstream in a
protein sequence was less than x or greater than L� x (L is the
length of the protein sequence concerned), the lacking amino acid
was filled with its mirror image (Fig. 1). Third, the peptide segment
samples obtained in this waywere put into the positive subset Sþ

x if
their centers have been experimentally annotated as the succiny-
lation sites; otherwise, they were put into the negative subset S�

x .
Fourth, using the CD-HIT software [33], the aforementioned sam-
ples were further subject to a screening procedure to winnow those
that had � 40% pairwise sequence identity to any other in a same
subset. By following the above procedures, we obtained a series of
benchmark datasets with different x values.

But preliminary tests had indicated that it would be most
promising when x ¼ 15. Accordingly, for further study below,
instead of Eq. (3) we shall consider

Sx¼15 ¼ Sþ
x¼15∪S

�
x¼15; (5)

where the benchmark dataset Sx¼15 contains 4720
ð2xþ 1Þ ¼ 31-tuple peptide samples, of which 1167 belong to the
positive subset Sþ

x¼15 and 3553 belong to the negative subset S�
x¼15.

For readers' convenience, the detailed sequences of the afore-
mentioned positive and negative samples are given in Supporting
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Information S1 and Supporting Information S2, respectively, in the
online supplementary material.
Sample formulation with general PseAAC

With the avalanche of biological sequence generated in the
postgenomic age, one of the most challenging problems in
computational biology and biomedicine is how to formulate a
biological sequence or sample with a discrete model or vector yet
still keep a considerable sequence pattern or characteristic. This is
because all of the existingmachine-learning algorithms, such as NN
(neural network), SVM (support vector machine), KNN (K-nearest
neighbors), and RF (random forest), can handle only vector but not
sequence samples, as elaborated in a recent comprehensive review
[11]. However, a vector defined in a discrete model or framework
may totally lose all of the sequence pattern information. To avoid
completely losing the sequence pattern information for proteins,
the pseudo amino acid composition [34,35] or PseAAC [36] was
proposed. Ever since the concept of pseudo amino acid composition
or Chou's PseAAC [37e39] was proposed, it has rapidly penetrated
into many biomedicine and drug development areas [40] and
nearly all of the areas of computational proteomics (see, e.g.,
Refs. [41e50] as well as a long list of references cited in Ref. [51] and
a recent review article [52]). Because it has been widely and
increasingly used, recently three powerful open access software
programs, called PseAAC-Builder [37], propy [38], and PseAAC-
General [51], were established; the former two are for generating
various modes of Chou's special PseAAC, whereas the latter one is
for those of Chou's general PseAAC [19], including not only all of the
special modes of feature vectors for proteins but also the higher
level feature vectors such as Functional Domain mode (see Eqs. (9)
and (10) of Ref. [19]), Gene Ontology mode (see Eqs. (11) and (12) of
Ref. [19]), and Sequential Evolution or PSSM mode (see Eqs. (13)
and (14) of Ref. [19]). Encouraged by the successes of using PseAAC
to deal with protein/peptide sequences, three web-servers [53e55]
were developed for generating various pseudo components for
DNA/RNA sequences as well. In particular, recently a powerful web-
server called Pse-in-One [56] has been established that can be used
to generate any desired pseudo components in a vector for protein/
peptide and DNA/RNA sequences according to users' needs.

It is obvious from Eq. (1) that when x ¼ 15 the corresponding
peptide contains (2 xþ1)¼ 31 amino acid residues; that is, it can be
reduced to

P ¼ R1R2/R14R15KR16R17/R30: (6)

Thus, according to the general form of PseAAC [19], the samples
in the positive subset Sþ

x¼15 and negative subset S�
x¼15 of Eq. (5) can

be respectively formulated as

Pþ ¼
h
Jþ

1 Jþ
2 / Jþ

u/ Jþ
U

iT
(7)

and

P� ¼
h
J�

1 J�
2 / J�

u /J�
U

iT
; (8)

where T is the transpose operator and U is an integer to reflect the
dimension of the PseAAC vector. The value of U, as well as the
componentsJþ

u andJ�
u ðu ¼ 1; 2; /; UÞ therein, will depend on

how to extract the desired information from the peptide samples in
Eq. (6). In this study, to make Pþ better reflect the intrinsic corre-
lation with the lysine succinylation sites, the components in Eq. (7)
are defined by the following sequence-coupling factors via the
conditional probability approach as originally proposed in
Refs. [18,57] for predicting the HIV protease cleavage sites in
proteins:

Jþ
u ¼

8>>>>>>>>>><
>>>>>>>>>>:

pþðR1jR2Þ; if u ¼ 1
pþðR2jR3Þ; if u ¼ 2
« «
pþðR15Þ; if u ¼ 15
pþðR16Þ; if u ¼ 16
« «
pþðR29jR28Þ; if u ¼ 29
pþðR30jR29Þ; if u ¼ 30

U ¼ 30; (9)

where pþðR1jR2Þ is the conditional probability of amino acid R1
occurring at the first position given that its right neighbor in the
peptide sample (cf. Eq. (6)) is R2, pþðR2jR3Þ is the conditional
probability of amino acid R2 occurring at the second position
given that its right neighbor is R3, and so forth. Note that in the
above equation only pþðR15Þ and pþðR16Þ are of nonconditional
probability given that the left neighbor of R15 and the right
neighbor of R15 are always K or Lys. All of these probability
values can be easily derived from the positive benchmark dataset
given in Supporting Information S1 in the supplementary ma-
terial as done in Ref. [18]. Similarly, the components in Eq. (8) are
defined by

J�
u ¼

8>>>>>>>>>><
>>>>>>>>>>:

p�ðR1jR2Þ; if u ¼ 1
p�ðR2jR3Þ; if u ¼ 2
« «
p�ðR15Þ; if u ¼ 15
p�ðR16Þ; if u ¼ 16
« «
p�ðR29jR28Þ; if u ¼ 29
p�ðR30jR29Þ; if u ¼ 30

U ¼ 30; (10)

where the probability values are derived from the corresponding
negative benchmark dataset as given in Supporting Information
S2.

Inspired by the concept of discriminant function that has been
successfully used by many previous investigators to predict the
specificity of GalNAc transferase [58], cysteine S-nitrosylation sites
[4], HIV protease cleavage sites [59], hydroxyproline and hydrox-
ylysine [7], tight turns and their types [60], and nitrotyrosine sites
[8], here we use the discriminant PseAAC vector to represent a
peptide sample; that is, P of Eq. (6) is finally formulated as a 30-D
(30-dimensional) vector given by

P ¼ ½J1 J2 /Ju /J30�T; (11)

where

Ju ¼
�
Jþ

u �J�
u

�
; u ¼ 1;2;…;30: (12)
Optimizing imbalanced training datasets

In the current benchmark dataset Sx¼15 (Eq. (5)), the negative
subset S�

x¼15 is much larger than the corresponding positive subset
Sþ
x¼15, as can be seen by the following equation:

Sx¼15ð4720Þ ¼ Sþ
x¼15 ð1167Þ∪ S�

x¼15ð3553Þ; (13)

where the figures in parentheses denote the sample numbers taken
from the “Benchmark dataset” section above. As we can see from
the above equation, the number of negative samples is nearly three
times the size of the positive samples for the benchmark dataset.
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Although this might reflect the real world in which the non-
succinylation sites are always the majority compared with the
succinylation sites, a predictor trained by such a highly skewed
benchmark dataset would inevitably have the bias consequence
that many succinylation sites might be mispredicted as non-
succinylation sites [23,61,62]. Actually, what is really the most
intriguing information for us is the information about the succi-
nylation sites. Therefore, it is important to find an effective
approach to optimize the unbalanced training dataset and mini-
mize this kind of bias consequence. To realize this, we took the
following procedures.

First, we used the KNNC (K-nearest neighbors cleaning) treat-
ment to remove some redundant negative samples from the
negative subset so as to reduce its statistical noise. The detailed
process is as follows. For each of the samples in the negative subset,
find its K-nearest neighbors, where K is an integer approximately
equal to the ratio between the negative samples and positive ones.
In the current case, K ¼ 3z3553=1167. If one of its three nearest
neighbors belongs to the positive subset, remove the negative
sample from the negative subset.

Second, we used the IHTS (inserting hypothetical training
samples) treatment to add some hypothetical positive samples into
the positive subset so as to enhance the ability in identifying the
interactive pairs. For details of how to generate the hypothetical
training samples, see the Monte Carlo samples expanding approach
in Refs. [18,63], the seed propagation approach in Ref. [64], or the
SMOTE (synthetic minority oversampling technique) approach in
Ref. [65].

After the above two treatments, we can change the original
highly skewed training dataset to a balanced training dataset with
its positive subset and negative subset having exactly the same size.

It is instructive to point out that the hypothetical samples
generated via the IHTS treatment can be expressed only by their
feature vectors as defined in Eq. (7) but not the real peptide
segment samples as given in Supporting Information S1 of the
supplementary material. Nevertheless, it would be perfectly
reasonable to do so because the data directly used to train a pre-
dictor were actually the samples' feature vectors but not their
sequence codes. This is the key to optimize an imbalanced bench-
mark dataset in the current study, and the rationale of such an
interesting approach is further elucidated later.

Random forest operation engine

The random forest algorithm is a powerful algorithm that has
been used in many areas of computational biology (see, e.g.,
Refs. [3,25,66e69]). Detailed procedures and formulation of RF
have been very clearly described in Ref. [70], and so there is no
need to repeat them here. The RF algorithm with MATLAB code
was downloaded from https://code.google.com/p/randomforest-
matlab/.

For the current study, all of the involved peptide samples are
converted into their 30-D vectors according to the definition of Eq.
(11), followed by entering them into the RF classifier. In addition,
the classifier's output will indicate whether the center residue K of
the query peptide is a succinylation site or a non-succinylation site.

The predictor established in this way is called “iSuc-PseOpt,”
where “i” stands for “identify,” “Suc” stands for “succinylation site,”
“Opt” stands for “optimizing” training dataset, and “Pse” stands for
“pseudo” components.

Results and discussion

As mentioned in the introductory paragraphs, one of the
important guidelines in developing a predictor is how to
objectively and properly evaluate its anticipated success rates
[19]. To realize this, we need to consider two things: one is what
metrics should be adopted to quantitatively measure the predic-
tion accuracy, and the other is what test method should be applied
to calculate the metrics values. Below, we address the two
problems.

A set of four metrics

For measuring the success rates for this kind of binary classifi-
cations, a set of four metrics is usually used in the literature: (i)
overall accuracy or Acc, (ii) Mathew's correlation coefficient or
MCC, (iii) sensitivity or Sn, and (iv) specificity or Sp (see, e.g.,
Ref. [71]). Unfortunately, their conventional formulations are not
quite intuitive and easy-to-be-understood for most experimental
scientists, particularly the one for MCC. Quite interesting, however,
by using Chou's symbols and derivation in the study of signal
peptides [72], the aforementioned four metrics can be converted
into a set of equations given by

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

Sn ¼ 1� Nþ
�

Nþ 0 � Sn � 1

Sp ¼ 1� N�
þ

N� 0 � Sp � 1

Acc ¼ L ¼ 1� Nþ
� þ N�

þ
Nþ þ N� 0 � Acc � 1

MCC ¼
1�

 
Nþ
�

Nþ þ N�
þ

N�

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
1þ N�

þ � Nþ
�

Nþ

!  
1þ Nþ

� � N�
þ

N�

!vuut
�1 � MCC � 1

;

(14)

where Nþ represents the total number of succinylation sites
investigated, Nþ� represents the number of true succinylation sites
incorrectly predicted to be of non-succinylation sites, N� repre-
sents the total number of non-succinylation sites investigated, and
N�þ represents the number of non-succinylation sites incorrectly
predicted to be of succinylation sites.

According to Eq. (14), it is very intuitive to see the following.
When Nþ� ¼ 0, meaning that none of the true succinylation sites is
incorrectly predicted to be of non-succinylation sites, we have
sensitivity Sn ¼ 1. When Nþ� ¼ Nþ, meaning that all of the succi-
nylation sites are incorrectly predicted to be of non-succinylation
sites, we have sensitivity Sn ¼ 0. Likewise, when N�þ ¼ 0, meaning
that none of the non-succinylation sites is incorrectly predicted to
be of succinylation sites, we have specificity Sp ¼ 1. When
N�þ ¼ N�, meaning that all of the non-succinylation sites are
incorrectly predicted to be of succinylation sites, we have specificity
Sp ¼ 0. When Nþ� ¼ N�þ ¼ 0, meaning that none of succinylation
sites in the positive dataset and none of the non-succinylation sites
in the negative dataset are incorrectly predicted, we have overall
accuracy Acc ¼ 1 and MCC ¼ 1. When Nþ� ¼ Nþ and N�þ ¼ N�,
meaning that all the succinylation sites in the positive dataset and
all the non-succinylation sites in the negative dataset are incor-
rectly predicted, we have overall accuracy Acc ¼ 0 and MCC ¼ �1.
When Nþ� ¼ Nþ=2 and Nþ� ¼ N�=2, we have Acc ¼ 0:5 and
MCC ¼ 0, meaning no better than random guessing. Therefore,
using Eq. (14) has made the meanings of sensitivity, specificity,
overall accuracy, and Mathew's correlation coefficient crystal clear
and much easier to understand, particularly for the meaning of
MCC, as concurred recently by many investigators (see, e.g.,
Refs. [23e27,62,69,73e77]).

https://code.google.com/p/randomforest-matlab/
https://code.google.com/p/randomforest-matlab/


Table 1
Comparison of proposed predictor with the existing method.

Cross-validation Method Sn (%)a Sp (%)a Acc (%)a MCCa AUCb

10-fold iSuc-PseAACc 50.65 89.67 80.02 0.4320 0.7820
iSuc-PseOptd 68.80 96.48 87.44 0.7084 0.9468

8-fold iSuc-PseAACc 50.25 89.65 79.91 0.4280 0.7820
iSuc-PseOptd 69.30 96.56 87.71 0.7137 0.9470

6-fold iSuc-PseAACc 49.95 89.70 79.87 0.4260 0.7810
iSuc-PseOptd 69.38 96.86 87.86 0.7193 0.9475

a See Eq. (14).
b The area under the curve of Fig. 1. The greater the AUC value is, the better the

corresponding predictor will be [93,94].
c The predictor developed in Ref. [17].
d The predictor proposed in this article.

J. Jia et al. / Analytical Biochemistry 497 (2016) 48e5652
It should be pointed out, however, that the set of equations
defined in Eq. (14) is valid only for the single-label systems. For
the multi-label systems, whose emergence has become more
frequent in system biology [78e80] and system medicine [81], a
completely different set of metrics as defined in Ref. [82] is
needed.

Cross-validation and target cross-validation

With the metrics for quantitatively measuring the predictor's
quality, the next thing is what validationmethod should be adopted
to derive their values.

In statistical prediction, the following three cross-validation
methods are often used to derive the metrics values for a predic-
tor: independent dataset test, subsampling (or K-fold cross-
validation) test, and jackknife test [83]. Of these three, however,
the jackknife test is deemed the least arbitrary that can always yield
a unique outcome for a given benchmark dataset, as elucidated in
Ref. [19] and demonstrated by Eqs. (28)e(32) therein. Accordingly,
the jackknife test has beenwidely recognized and increasingly used
by investigators to examine the quality of various predictors (see,
e.g., Refs. [41e44,47,80,84,85]). However, to reduce the computa-
tional time, in this study we adopted the K-fold cross-validation, as
done by most investigators with SVM and RF algorithms as the
prediction engine.

When conducting the K-fold cross-validation for the
current predictor iSuc-PseOpt, however, some special consid-
eration is needed. This is because a dataset, after optimization
by the KNNC and IHTS treatments, may miss many experi-
mental negative samples and contain some hypothetical posi-
tive samples. It would be fine to use such a dataset to train
a predictor, but not for validation. This is because the validation
should be performed for all of the experimental data in the
benchmark dataset but not on the added hypothetical
samples or only on the data in the reduced negative subset.
To ensure this, a special cross-validation, the so-called target
cross-validation, has been introduced here. During the target
cross-validation process for the positive samples, only the
experiment-confirmed samples are singled out as the targets
(or test samples) for validation; however, during the target
cross-validation process for the negative samples, even all
the excluded experimental data must be taken into account.
The detailed procedures of the target K-fold cross-validation are
as follows (without losing the generality, let us consider
K ¼ 10).

Step 1.

Before optimizing the original benchmark dataset in Eq. (13),
both its positive and negative subsets were randomly divided into
10 parts with about the same size.

Step 2.

One of the 10 sets was singled out as the testing dataset, and the
remaining 9 sets were selected as the training dataset.

Step 3.

The training set was optimized using the KNNC and IHTS
treatments as described in the “Optimizing imbalanced training
datasets” section in Materials and Methods. After such a process,
the original imbalanced training dataset would become a balanced
one; that is, its positive subset and negative subset would contain
the same number of samples.
Step 4.

The aforementioned balanced dataset was used to train the
operation engine, followed by applying the iSuc-PseOpt predictor
to calculate the prediction scores for the testing dataset, which had
been singled out in step 2 before the optimized treatment and,
hence, contained the experiment-confirmed samples only.

Step 5.

The scores obtained in this way were substituted into Eq. (14) to
calculate Sn, Sp, Acc, and MCC.

Step 6.

Steps 2 to 5 were repeated until all 10 divided sets had been
singled out one by one for testing validation.

Step 7.

An average of the metrics scores was taken over the 10-round
tests.

It is instructive to emphasize again that it is absolutely reason-
able to use the above target cross-validation steps to compare the
current predictor with the existing ones. This is because all of the
predictors concerned were tested using exactly the same
experiment-confirmed samples and all of the added hypothetical
samples had been completely excluded from the testing datasets.

Comparison with the existing method

The success rates achieved by the iSuc-PseOpt predictor via the
K-fold target cross validation on the benchmark dataset (see
Supporting Information S1 and Supporting Information S2 in sup-
plementary material) derived from the 896 proteins [28] are given
in Table 1. For facilitating comparison, also listed are the corre-
sponding rates achieved by iSuc-PseAAC [17], the only peer coun-
terpart in the area of predicting the lysine succinylation sites in the
aforementioned 896 proteins. As we can see from the table, iSuc-
PseOpt remarkably outperformed iSuc-PseAAC in all four metrics,
indicating that, in comparison with the existing method, the pro-
posed new predictor has better sensitivity, specificity, overall ac-
curacy, and stability.

Graphs are a useful vehicle for studying complicated biological
systems because they can provide intuitive insights, as demon-
strated by a series of previous studies (see, e.g., Refs. [86e92]). To
provide an intuitive comparison, the graph of receiver operating
characteristic (ROC) [93,94] was adopted to show the improvement
of iSuc-PseOpt over iSuc-PseAAC. The blue graphic line in Fig. 2 is
the ROC curve for the iSuc-PseAAC predictor, whereas the red



Fig.2. Intuitive graphs of ROC curves [93,94] to show the performance of iSuc-PseAAC
[17] and iSuc-PseOpt. See the main text for further explanation. (For interpretation of
the references to color in the text description of this figure, the reader is referred to the
web version of this article.)
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graphic line is that for the proposed predictor iSuc-PseOpt. The area
under the ROC curve is called AUC (area under the curve). The
greater the AUC value is, the better the predictor will be [93,94]. As
we can see from Fig. 2, the area under the red curve is remarkably
greater than that under the blue curve, indicating that the proposed
predictor is indeed better than iSuc-PseAAC [17]. Therefore, we
anticipate that iSuc-PseOpt may become a useful high-throughput
tool in this important area or, at the very least, will play a com-
plementary role to the existing method.

Why could the proposed method be so powerful? The reasons
are as follows. First, the KNNC and IHTS treatments have been
Fig.3. Semi-screenshot of the top page for the web-server
introduced to optimize the training datasets so as to avoid many
misprediction events caused by the highly imbalanced training
datasets used in Ref. [17]. Second, the coupling effects among the
amino acids around the target sites have been taken into account
via the conditional probability as done in Refs. [18,58,60,95].

Web-server and user guide

To enhance the value of its practical applications, a web-server
for iSuc-PseOpt has been established at http://www.jci-bioinfo.
cn/iSuc-PseOpt. Furthermore, to maximize the convenience for
the majority of experimental scientists, a step-by-step guide is
provided below.

Step 1.

Opening the web-server at http://www.jci-bioinfo.cn/iSuc-
PseOpt, you will see the top page of iSuc-PseOpt on your com-
puter screen, as shown in Fig. 3. Click on the “Read Me” button to
see a brief introduction about the iSuc-PseOpt predictor.

Step 2.

Either type or copy/paste the query protein sequences into the
input box at the center of Fig. 3. The input sequence should be in
FASTA format. For examples of sequences in FASTA format, click the
“Example” button right above the input box.

Step 3.

Click on the “Submit” button to see the predicted result. For
example, if you use the two query protein sequences in the
“Example” window as the input, approximately 20 s after your
submitting you will see the following on the screen of your com-
puter: (1) Sequence-1 contains 234 amino acid residues, of which 6
are highlighted with red, meaning being of succinylation sites. (2)
iSuc-PseOpt at http://www.jci-bioinfo.cn/iSuc-PseOpt.

http://www.jci-bioinfo.cn/iSuc-PseOpt
http://www.jci-bioinfo.cn/iSuc-PseOpt
http://www.jci-bioinfo.cn/iSuc-PseOpt
http://www.jci-bioinfo.cn/iSuc-PseOpt
http://www.jci-bioinfo.cn/iSuc-PseOpt
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Sequence-2 contains 417 residues, of which 9 are highlighted with
red, meaning being of succinylation sites. All of these predicted
results are fully consistent with experimental observations except
for residues 3 and 141 in sequence-1 and residue 285 in sequence-
2, which are overpredicted.

Step 4.

As shown in the lower panel of Fig. 3, you may also choose the
batch prediction by entering your e-mail address and your desired
batch input file (in FASTA format) via the “Browse” button. To see
the sample of batch input file, click on the “Batch-example” button.

Step 5.

Click on the “Supporting Information” button to download the
benchmark dataset used in this study.

Step 6.

Click on the “Citation” button to find the relevant articles that
document the detailed development and algorithm of iSuc-PseOpt.

Conclusion

It is a very effective approach to optimize the training dataset via
the KNNC and IHTS treatments for enhancing the success rates in
predicting the lysine succinylation sites. This is because the training
datasets extracted directly from the database [28] are usually
extremely skewed and unbalanced, with the negative subset being
overwhelmingly larger than the positive subset. In addition, it is
important to consider the coupling effects of the amino acids
around the potential succinylation sites.

We anticipate that the iSuc-PseOpt web-server presented in this
article will become a very useful high-throughput tool for identi-
fying lysine succinylation sites or, at the very least, will become a
complementary tool to the existing prediction method in this area.

It has not escaped our notice that the approaches introduced
here, such as optimizing the training dataset and incorporating the
sequence-coupling effects, can also be used to address many other
important problems in computational proteomics.
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