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Abstract: During the last decade the nanotechnologists began research on applications of nanomaterials for medi-
cine and therapeutics. Various nanoparticles (nanomedicines) are being used worldwide for the diagnosis and man-
agement in a number of disorders including cancer and neurodegenerative disorders. The successful non-viral gene 
therapy is now possible with the advancements in nanotechnology. Mostly nanoparticles are divided into two main 
classes: organic and inorganic nanoparticles. Diverse features of nanomedicines with surface modification help to make them biocom-
patible with addition of varying polymer that facilitates targeted delivery of drug and its controlled release into the cells, tissues and or-
gans. Liposomes, quantum dots, silver and gold nanoparticles are the most common examples of nanomedicines. 
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INTRODUCTION 
 Nanomedicine is the product of nanotechnology, with the aim 
to facilitate site-specific, targeted way of treatment with minimum 
side effects, imaging methodologies for early diagnosis and/or 
monitoring of disorders as well as control of biological system. It is 
actually the control of matter (approximately, 1-100nm) in the bio-
logical system dealing with pathological state in the body. Exclu-
sive physico-chemical properties are associated with nanomedicines 
like very small size, large surface area to mass ratio as well as high 
reactivity as compared to other bulk materials of the same composi-
tion. Three important aspects are related to the mode of action, 
metabolism, fate of the particles and other functionalities including 
toxicities such as 1) size of the nanoparticle, 2) shape of the 
nanoparticle and 3) surface chemistry of the nanoparticles. 

 Various types of nanoparticles are being employed for the de-
velopment of nanomedicines for the management of various health 
issues. Nanoparticles are classified usually into two major groups; a 
particle with major building material is organic molecule and other 
in which inorganic elements are in core, such as metals. In organic 
particles, dendrimers, liposomes, emulsions, carbon nanotubes are 
included having general structural components like lipid membrane, 
polyethylene glycol (PEG), human albumin and drug of interest. On 
the other hand, inorganic nanoparticles also share the common fea-
tures such as a central core: for fluorescence, electronic, magnetic 
as well as optical characteristics of particle and shielding coating 
are organic in nature. The outer organic layer protects the core from 
degradation in physiological environment of biological system and 
can produce covalent and/or electrostatic bonds with positively  
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charged components and biological molecules that have basic func-
tional groups like thiol and amines. 
 Various nanoparticle based medicines and diagnostic tools have 
been developed for the management of a number of disorders like 
cancer, pain, allergy, diabetes and so on [1, 2]. Nanoparticles pro-
vide therapeutic delivery system because they facilitate targeted 
delivery of a drug and its controlled release. Moreover, nanoparti-
cles provide diagnostic tools for the detection of precancerous cells, 
viral fragments and disease markers [3, 4]. 
 A number of nanoparticle based medicines have been approved 
for clinical use. Moreover, multiple forms of therapeutics are in 
clinical and pre-clinical trials [5]. Among these therapeutics, 
liposomal and polymer-drug conjugates are two dominant nanopar-
ticle based medicines. Other forms of nanoparticles (Table 1) are 
micelles [6-8], nano-shells [9], dendrimers [10, 11], metallic 
nanoparticles [12, 13], viral nanoparticles [14, 15], polysaccharide 
based [16, 17], ceramic nanoparticles [18, 19] and albumin based 
nanoparticles [20, 21].  
 The emerging nanomedicines are usually given by intravenous 
injections, while orally administered medicines are in preclinical 
trial [22] for the delivery of drugs both hydrophobic and hydro-
philic in nature. Moreover, the imperative aim for the drug is 
bioavailability at the target site in the biological system. A prodrug 
nanomedicine approach has been investigated for a hydrophilic 
peptide, and leucine (5)-enkephalin, to the brain via oral route [23]. 
Mitoxantrone poly (butyl cyanoacrylate) nanomedicine produced 
fruitful outcomes in hepatocellular carcinoma (HCC) patients. It 
accumulates into the macrophages of spleen and liver [24]. 
Nanoparticles containing the metal core coated by the dextran or 
any other polymer coating help to produce magnetic resonance 
imaging (MRI).  
 Nanoparticles have also been explored in respect to their poten-
tial to produce the small signaling molecules in response to immune 
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system as certain nanoparticle preparations promote cytokines re-
lease from endothelial cells. As far as cancer is concerned, 
nanomedicines have proved to be a better tool in the field of diag-
nostics and improved management of disorder. Most of the cancer-
ous cells exhibit a protein called epidermal growth factor receptor 
(EGFR) on the surface of their membranes, while non-cancerous 
cells have less expression of EGFR. The combination of gold 
nanoparticle with an antibody for EGFR (anti-EGFR) has been 
employed for binding of nanoparticles to the cancer cells, hence, 
manifesting various light absorptions and scattering spectra as 
compared to benign cells. With the help of this malignant cells can 
be determined easily in biopsy samples [25].  

 Supermagnetic nanoparticles having a core of metal could be 
conjugated with antibodies against Erbb2 have exhibited fruitful 
outcomes both in vivo targeting of breast cancer and molecular 
imaging simultaneously [26]. 

LIPOSOMES 

 Liposomes are bilayered membrane structures (spherical lipid 
vesicles) consisting of synthetic or natural amphiphilic lipid mole-
cules having unique properties. Liposomes are used as carriers for 
medicines because of encapsulation of both hydrophobic and hydro-
philic drugs with high effectiveness; encapsulating the drug from 
external conditions of biological system; functionalization with spe-
cific ligand to target the desired cells, and coating with biocompatible 
polymer like polyethylene glycol (PEG). Hence, half life of 
liposomes is enhanced to circulate in the biological system [27] and 
decreased spleen and liver capturing [28] as well as resistance to 
serum degradation [29]. First liposomal drug formulation (Doxil) was 
approved for the treatment of AIDS associated with Kaposi’s sar-
coma by Food and Drug Administration (FDA), USA in 1995 [30].  

 Doxil has prolonged the doxorubicin half life in circulation as 
well as drug deposition in the site of interest such as tumor area. 
Moreover, liposomes are cleared from blood rapidly by phagocytic 
cells of reticuloendothelial system. Such drawback can be over-

come by coating the liposomal surface with biocompatible and inert 
polymer like PEG. The coating of the polymer facilitates with pro-
tective covering to the liposome and reduces liposomal recognition 
by opsonins [31]. Another strategy can be employed in which anti-
bodies, small-molecules like transferrin or folate and peptides are 
attached to the liposomal surface and can be used for drug delivery 
to the specific site [32]. By incorporation of oleyl alcohol, phos-
phatidyl ethanolamine or dimethyl dioctadecylammonium bromide 
make the liposome stable in blood while facing the phase transition 
of endosomal pH [33]. Liposomal uptake by tumor cells mainly 
depends on the enhanced permeability and retention (EPR) effect 
[30]. 

 To enhance the drug accumulation in the cancer cells, 
liposomes must combine with a small size targeting ligand to dif-
ferentiate between the cancer as well as supportive cells, and more 
important for internalizing moiety for intracellular drug delivery 
and enhancing the long circulation time to reach the target site (tu-
mor cells). Thus, PEG chains are coated for long blood circulation. 
PEGylation provides multivalent binding and shows flexibility, 
with respect to ligand. In this way, such nanomedicines facilitate 
with best therapeutic activity in contrast to PEGylated liposomes 
without ligand [34, 35]. Various types of ligands including peptide, 
protein, antibodies and small molecules have been used for targeted 
drug delivery with the help of liposomes. In vitro toxicity and in vivo 
antitumor activity of PEGylated liposomes were investigated in the 
animal model [36]. Antibodies like anti-HER2 and anti-CD19 have 
been studied for HER-2 receptor on cancer cells, and CD19 receptors 
are found to be over-expressed in B cell lymphoma [37, 38].  

 Dual drug-loaded liposome (daunorubicin and cytarabine) being 
investigated for the treatment of acute myeloid leukemia is under 
phase II clinical trial. HL-60B human leukemia cells showed a me-
dian survival time of forty-three days from the 30-days of saline 
treated mice [39]. Similarly, liposomes (floxouridine and irinote-
can) used for the treatment of colorectal cancer are under the phase 

Table 1. Multiple nanoparticles and their uses in management of disorders. 

Nanoparticle  Therapeutic Use in References  

Micelles  Antibody-directed enzyme, Daunomycin, Doxorubi-
cin, Docetaxel 

Various cancers including ovarian, prostate, and brain  [1, 6, 7, 94] 

Nano-shells  Tumors  [9] 

Dendrimers  Methotrexate, Chloroquine phosphate, Efavirenz, 
Camptothecin 

Various cancer including epithelial, HIV, malaria [10, 11, 95, 96] 

Metallic  Thermal and photothermal therapy, mitoxantrone  Breast cancer, brain tumor and tumor angiogenesis   

[12, 13] 

Viral  Phototherapy, gene therapy Tumor  [14, 15] 

Polysaccharide  Doxorubicin  Tumors and breast cancer [16, 17] 

Ceramic (silica) Imaging agents, photodynamic therapy and chemo-
therapy 

Cancers and imaging [18, 19] 

Albumin-based NC-1900 vasopressin fragment analog, Doxorubicin 
and methotrexate 

Scopolamine-induced memory deficit and cancers in-
cluding breast cancer  

[20, 21, 97] 
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II trial and have shown better drug efficacy results as compared to 
liposomal floxouridine or irinotecan alone treatment [40]. Other 
examples can be observed from Table 2.  

POLYMER-DRUG CONJUGATES 
 Anticancer chemotherapeutic agents have two unfavorable fea-
tures such as short half-life in biological system and non site-
specific targeting leading to side effects. The conjugation of anti-
cancer agents with nanoparticles can improve the undesired side 
effects. Polymer-drug conjugates are able to enhance the circulation 
time for several hours as well as decrease cellular uptake to the 
endocytic way. As a result, passive delivery of drug to the desired 
tissue is enhanced in tumors and atherosclerotic plaques [41, 42]. In 
vitro and in vivo studies related to combination cancer therapy with 
polymer-drug conjugates are under investigations. For example, 
doxorubicin and gemcitabine (in vivo) for prostate cancer [43], 
doxorubicin and phosphatidylinositol-3 kinase inhibitor (in vitro) 
for breast cancer [44], doxorubicin and combretastatin (in vivo) for 
lung cancer and melanoma [45], paclitaxel and Bcl-2 targeted 
siRNA (in vitro) for breast cancer [46] and paclitaxel and VEGF 
siRNA (in vitro) for prostate cancer [47]. 

NANOFIBERS (NFS) 
  Nanofibers provide the platform for bone tissue engineering 
[48], with the help of 50% bead free silk-fibroin (SF) and 50% of 
chitosan (CS) composite nanofibers. Moreover, nanofiber based 
wound dressings (NFDs) have made progress in drug delivery vehi-
cle in the form of hyperbranched polyglycerol NFD [49], regulation 
in release of dual drugs [50], combination of ZnO with sodium 
alginate nanofibers to increase antibacterial action [51] and silica 
NFD combination with silver nanoparticles used in recovering the 
wound cover [52]. 

CERIUM OXIDE NANOPARTICLES (CONPS) 

 Cerium oxide nanoparticles (CONPs) have different abilities 
that attracted the scientists’ intention as therapeutic agent to manage 
various diseases, including cancer. The antioxidant ability of 
CONPs and/or protection from free radical, particularly reactive 
oxygen species (ROS), shows that these nanoparticles may be used 

to treat many human diseases that are associated with the produc-
tion of ROS. Studies show that CONPs exhibit imitative activities 
of superoxide dismutase (SOD) [61] and catalase [62] that neutral-
izes the superoxide ion (O2

-) and hydrogen peroxide (H2O2) in the 
biological system. Similarly, CONPs show scavenging ability for 
nitric oxide (NO) [63] and hydroxyl radical (OH-) [64]. In contrast 
to these investigations CONPs also reflects the direct oxidant action 
in the biological system. It could be inferred from the research that 
pH is one of the few crucial factors that direct the particles whether 
CONPs act as oxidant or antioxidant [65, 66].  

 Polymer coating of CONPs enhances the aqueous solubility and 
shows both cytotoxic and anti-invasive properties in tumor-stroma 
interactions [67]. Treatment of CONPs before giving the radiation 
therapy exposure alleviate the radiation therapy-induced damaging 
and death of cells in normal tissues of breast [68], head and neck 
[69] and lung [70].  

GOLD NANOPARTICLES (GNPS) 
 Gold nanoparticles (GNP) are considered to be promising 
agents for cancer therapy. Moreover, GNPs are being explored as 
contrast agents, photothermal agents, and radio-sensitizers as well 
as drug carriers. GNPs show various physic-chemical characteris-
tics such as surface plasmon response (SPR) and ability to bind 
with thiol and amine groups, facilitating surface modification, 
hence, fruitful in applications of biomedical sciences [71]. The 
exact mechanism for entry of GNP into the cell is unknown; there-
fore, one of the most suitable mechanisms could be non-specific 
receptor mediated endocytosis (RME) [72]. Tumor targeting, with 
respect to GNPs, may be achieved by binding the tumor-
recognizing molecules such as transferrin, epidermal growth factor 
(EGF), monoclonal antibodies or folic acid [73, 74].  

 As far as the drug carrier is concerned, GNP is covalently 
bound to gemcitabine (as payload) and cetuximab (targeting agent) 
in pancreatic cancer [75]. Up to 60% of EGFR is over-expressed by 
pancreatic cells and combination of these two molecules has been 
studied in phase II trials [76]. Citrate-coated GNPs were produced 
and bound with multiple trastuzumab antibodies to facilitate the 
targeting in SK-BR3 breast cancer cells [77].  

Table 2. Multifunctional nano-carrier uses following combination of drugs.  

Drug  Disease/cell line Status  References  

Vincristine  Acute lymphoblastic eukemia Approved  [98] 

Paclitaxel  Solid tumor Approved  [99] 

Daunorubicin and cytarabine Acute myeloid leukemia Phase I [100] 

Floxouridine and irinotecan Solid tumor Phase I [101] 

PKN3 siRNA Pulmonary metastasis Phase I [102] 

Doxorubicin  Colorectal cancer Phase I [103] 

Doxorubicin B-cell non-Hodgkin’s lymphoma Preclinical  [34] 

Paclitaxel Breast cancer Preclinical [35] 

Vincristine  B lymphoma cells Preclinical [99] 
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QUANTUM DOTS (QDS) 

 Quantum dots (QDs) are inorganic fluorescent probes, used for 
multiplexed imaging and detection and long circulating time. QDs 
have several advantageous features in fluorescence characteristics 
in biological applications as compared to the normal organic dyes. 
1) broad excitation spectra, 2) narrow and symmetric emission 
spectra, 3) large molar extinction coefficients which enable them to 
absorb more photons (10-50 times) than organic dyes and 4) much 
more stability with considered photobleching. The bare QDs are 
considered not suitable for biological purposes because they are 
insoluble in water. To make them use in biological system due to 
their optical properties, the surface modifications are necessary. 
Multiple surface modifications are employed in case of QDs for 
their use in biological system. The binding of thiolated PEG poly-
mer helps in the biocompatibility, water solubility and decrease in 
non-specific cellular uptake [78]. Other polymers are also used with 
varying length of chain and number of binding dentates like den-
drimers [79], phosphine polymers [80] and PEGylated dihydrol-
ipoic acid [81, 82].  

NANOPARTICLES AND NEURODEGENERATIVE DISOR-
DERS 

 With the advancement in the nanoparticle technology it is now 
achievable to target the drug to specific, cells and/or tissue success-
fully with less toxic outcomes in biological system. The importance 
of medical implications of nanotechnology products is evident in 
various disorders linked with central nervous system [83]. Various 
particulates have shown successful gene transfer in brain and neu-
ronal tissues [84-86]. A successful cure and management of various 
neurodegenerative disorders are not possible, at present. Such dis-
orders are characterized by protein accumulation as well as neu-
ronal degeneration. Moreover, the number and type of damaged 
neurons vary from disease to disease in nervous system. Degenerat-
ing cholinergic neuritis, amyloids plaques with amyloids-beta (A ) 
fragments and anomalous combination of hyperphosphorylated tau 
protein in neurofibillary tangles are the main characters of Alz-
heimer’s disease (AD) [87]. The possible biomarker for AD is amy-
loids-beta derived diffusible ligands (ADDL). Association between 
cerebrospinal fluid (CSF) and ADDL levels may be helpful for the 
better diagnosis and early treatment for AD. This could be possible 
by the biding of ADDL-specific monoclonal antibodies with 
nanoparticle based detection technique, known as biobarcode am-
plification (BCA) [88]. However, the evaluation of toxic effect of 
nanoparticles is most crucial before treating any disorder related to 
CNS. Another important nanoparticle, organically modified silica 
(ORMOSIL) nanoparticle have been used as a non-viral vector for 
in vivo gene transferring and its expression in the brain region using 
animal model [89]. 

NANOPARTICLES, IMMUNE RESPONSE AND NANOTOX-
ICITY 

 Current investigations have been reported that nanoparticles are 
responsible for the elicit of immune responses because every parti-
cle that is entered into the body, is recognized by the immune cells 
that cope with the foreign invader through various mechanisms 
including release of signaling molecules that are accountable for 
immune response. The immune system shows two types of immu-

nity; adaptive and innate. Adaptive immunity refers to the adapta-
tion of immune system over time to identify the specific pathogen 
or foreign invader more efficiently. While innate immunity is re-
sponsible for facilitating the immediate protection against infection. 
Due to the electrical, optical and biological properties of nanoparti-
cles, they have attracted considerable attention of researchers with a 
number of applications including drug delivery.  

 Studies reflect that the nanoparticles are pro-inflammatory in 
nature, such as very small size proteoliposomes [53], gold nanopar-
ticles [54] and silica nanoparticles [55]. In contrast to these 
nanoparticles, silver nanoparticle (Ag@tiopronin) did not show pro-
inflammatory impact on macrophages and differentially inhibited 
the interleukin-6 (IL-6) secretion mediated by specific Toll-like 
receptor (TLRs) [56]. In the case of other cell types, silver nanopar-
ticles strongly inhibited the production of IL-5, interferon-  (INF- ) 
and tumor necrosis factor-  (TNF- ) by the peripheral blood mono-
nuclear cells (PBMCs) [57] and IL-6, 8 and 11 by the human mes-
enchymal stem cells (hMSCs) [54]. 

 Silver nanoparticles have the ability to bind the bacterial cell 
wall and cell membrane and are responsible for halting the process 
of respiration. These particulates can interfere with sulphur contain-
ing proteins present in the bacterial membrane and phosphorous 
containing molecules such as DNA to prevent replication mecha-
nism [58]. Antimicrobial activity of silver nanoparticles has been 
explored against Escherichia coli (Gram negative) and Staphylo-
coccus aureus (Gram positive). In case of E. coli bacterial growth 
was inhibited [59] while S. aureus showed mild inhibition in 
growth [60], suggesting that antimicrobial effect may be associated 
with the differences between the cell wall and membrane (Gram 
negative and positive) of bacterial including chemical nature, thick-
ness and extensive cross linking.  

 Various studies have shown the cytotoxicity in the biological 
system by the nanoparticles [90-92]. The risk of toxicity depends 
upon the uptake mechanism, inflammation, transport within the 
body and exposure rate of the particulates. The term non-toxicity 
for nanoparticles in controlled standard cell culture medium during 
cytotoxic experiments does not mean that they are completely 
harmless. They may produce toxic effects in a tissue, disturbing 
normal physiology of body, without rapidly or significantly killing 
the cells. The toxicity idea related to nanoparticles is linked with 
the presence of metallic surfaces without coating by biocompatible 
material. The particulates covered with organic layer or coatings are 
relatively much less toxic. However, nanoparticles coated with 
starch exhibited production of reactive oxygen species (ROS), re-
duced ATP contents, cell cycle arrest, mitochondria dysfunction as 
well as DNA damage [93]. 

CONCLUSION 

 Nanomedicines show variations in their physico-chemical prop-
erties and are being investigated for management of various health 
issues throughout the world. Various pharmaceutical companies are 
working for the manufacturing of multiple types of nanomedicines 
which are on the stages of clinical trials Table 3. Researchers are 
hopeful by collecting the data from animal models and predicting 
nanomedicines as a better option for management of various disor-
ders. 
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