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H I G H L I G H T S
� microRNA (miRNA) plays an important role in gene expression.

� Identification of real pre-miRNAs is important miRNA-based therapy.
� A novel predictor was developed for fast and effectively identifying miRNA.
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a b s t r a c t

The microRNA (miRNA), a small non-coding RNA molecule, plays an important role in transcriptional and
post-transcriptional regulation of gene expression. Its abnormal expression, however, has been observed
in many cancers and other disease states, implying that the miRNA molecules are also deeply involved in
these diseases, particularly in carcinogenesis. Therefore, it is important for both basic research and
miRNA-based therapy to discriminate the real pre-miRNAs from the false ones (such as hairpin
sequences with similar stem-loops). Most existing methods in this regard were based on the strategy in
which RNA samples were formulated by a vector formed by their Kmer components. But the length of
Kmers must be very short; otherwise, the vector's dimension would be extremely large, leading to the
“high-dimension disaster” or overfitting problem. Inspired by the concept of “degenerate energy levels”
in quantum mechanics, we introduced the “degenerate Kmer” (deKmer) to represent RNA samples. By
doing so, not only we can accommodate long-range coupling effects but also we can avoid the high-
dimension problem. Rigorous jackknife tests and cross-species experiments indicated that our approach
is very promising. It has not escaped our notice that the deKmer approach can also be applied to many
other areas of computational biology. A user-friendly web-server for the new predictor has been
established at http://bioinformatics.hitsz.edu.cn/miRNA-deKmer/, by which users can easily get their
desired results.
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1. Introduction

MicroRNAs (miRNAs) are small single-strand and non-coding
RNAs (ncRNAs), which play important roles in gene regulation by
targeting messenger RNAs (mRNAs) for cleavage or translational
repression (Fig.1). Their lengths are about 17–25 nt (Lopes et al.,
2014). The miRNAs are also involved in many important biological
processes, such as affecting stability, translation of mRNAs, and
negatively regulating gene expression in post-transcriptional
processes. Therefore, it is fundamentally important to identify the
real pre-miRNAs from the false ones. Unfortunately, it is difficult to
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Fig. 1. MicroRNAs (miRNAs) are small single-strand and non-coding RNAs
(ncRNAs), which play important roles in gene regulation by targeting messenger
RNAs (mRNAs) for cleavage or translational repression.
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use the traditional experimental techniques for timely and sys-
tematically detecting miRNAs from a genome (Xuan et al., 2011).
Facing the avalanche of genome sequences generated in the
postgenomic age, it is imperative to develop computational
methods (Li et al., 2010) for detecting miRNAs according to their
sequence information alone.

At present, the most successful computational approaches in
this field were using the Kmer composition to represent RNA
samples (Wei et al., 2014). But the length of Kmers practically
really useful in this area is less than 6 nucleobases. This is because
any Kmers longer than that would result in using extremely high-
dimension vectors to represent the statistical samples (Chen et al.,
2014b, 2014a; Lin et al., 2014), leading to the “high-dimension
disaster” (Wang et al., 2008) or overfitting problem that would
significantly reduce the deviation tolerance or cluster tolerant
capacity (Chou, 1999) so as to lower down the success rate of
prediction. However, the miRNAs can vary from 17 to 25 nucleo-
bases. Therefore, the Kmer approach can be only used to represent
the short-range or local information of miRNA sequences but not
their long-range or global information. Particularly, most of the
pre-miRNAs have the characteristic of stem-loop hairpin struc-
tures (Xue et al., 2005). In view of this, some novel approaches are
definitely needed to relax the aforementioned limitation imposed
on the length of Kmers for miRNA sequences. The present study
was initiated in an attempt to address these problems.
2. Methods

2.1. Benchmark dataset

The benchmark dataset S used in this study can be formulated
as

S S S 1∪= ( )+ −

where the positive subset S+ contains pre-miRNA samples only,
which were extracted from the latest version of miRBase (release
21: June 2014). Furthermore, the CD-HIT software (Li and Godzik,
2006; Li et al., 2009) was used to make sure that none of the pre-
miRNA samples included in S+ has 80%≥ pairwise sequence
identity to any other. By doing so, we finally obtained 1 612 pre-
miRNA samples for the positive subset S+.

The negative subset S− also contained 1 612 samples, which
were randomly picked from the 8489 false pre-miRNAs in (Xue
et al., 2005). Again, none of the negative samples included in S−

has 80%≥ pairwise sequence identity to any other.
Since the most stringent cutoff threshold for DNA sequences by

CD-HIT is 75%, to our best knowledge, the aforementioned
benchmark dataset is so far the most stringent and largest
benchmark dataset constructed for studying the prediction of pre-
miRNAs.

Also, as pointed out in a comprehensive review (Chou and
Shen, 2007), there is no need to separate a benchmark dataset into
a training dataset and a testing dataset if a prediction method is to
be validated by the jackknife or subsampling (K-fold) cross-vali-
dation since the outcome thus obtained is actually from a com-
bination of many different independent dataset tests.

The benchmark dataset S as well as its subsets S+and S−, along
with the corresponding detailed sequences are given in Support-
ing information S1.

As pointed in Chou (2011) and concurred in a series of recent
publications (see, e.g., Chen et al., 2012; Min and Xiao, 2013; Xiao
et al., 2013a, 2015; Xu et al., 2013b, 2014b; Liu et al., 2014a, 2015a;
Qiu et al., 2014, 2015; Jia et al., 2015), one of the keys in success-
fully developing a sequence-based statistical predictor is how to
effectively formulate the sequence samples concerned with an
effective mathematical expression that can truly capture their
intrinsic correlation with the target to be predicted. Below we are
to address this problem.

2.2. Use degenerate Kmer composition to represent RNA samples

Suppose an RNA sequence R with L nucleobases (nitrogenous
bases or nucleic acid residues); i.e.,

R B B B B R B B B 2L1 2 3 4 5 6 7= ⋯ ( )

where

B A adenine C cytosine G guanine U uracil 3i { }∈ ( ) ( ) ( ) ( ) ( )

denotes the nucleobase at sequence position i L1,2, ,( = ⋯ ).
The most straightforward method to represent an RNA sample

is just using its entire nucleobase sequence as shown in Eq. (2). In
order to identify whether the RNA sample belongs to pre-miRNA
or false pre-miRNA, one may use various sequence-similarity-
search-tools, such as BLAST (Altschul et al., 1997; Schaffer et al.,
2001), to search RNA database for those sequences that have high
sequence similarity to the query RNA sample R. Subsequently, the
attributes of the RNAs thus found were used to deduce the attri-
bute concerned for R. Unfortunately, this kind of straightforward
sequential model, although quite intuitive and without missing
any of the sample's information, failed to work when it did not
have significant sequence similarity to any character-known RNA.
To overcome such a difficulty, one had to consider using non-
sequential or discrete vector models to formulate RNA samples.
Actually, the other important reasons to embrace the vector
models is that all the existing computational algorithms can only
handle vectors but not sequences, as elaborated in a recent paper
Chou (2015).

Here we are to propose a completely different vector model to
represent RNA sample, as described below.

First of all, formulating the RNA sequence of Eq. (2) according
to its secondary structure derived from the Vienna RNA software
package (released 2.1.6) (Hofacker, 2003), we have

R 4L1 2 3 4 5 6 7= Ψ Ψ Ψ Ψ Ψ Ψ Ψ ⋯ Ψ ( )

where 1Ψ denotes the secondary structure state of B1, 2Ψ the
structure state of B2, and so forth. They can be any of the following
seven structure states; i.e.,

A, C, G, U, A U, G C, U G 5iΨ ∈ { − − − } ( )

where A, C, G, U represent the structure states of the four unpaired
nucleobases, while A–U, G–C, U–G represent the structure states of
the three paired bases. Note that, in order to reduce computational



Table 1
Comparison of the dimension between Kmer vector (Eq. (6)) and DeKmer vector
(Eq. (7)).

K Dimension of Kmer vector a Dimension of DeKmer vector b Ratio γ c

2 49 49 1
3 343 147 3~
4 2401 294 8~
5 16,807 490 34~
6 117,649 735 160~
7 823,543 1029 800~
8 5,764,801 1372 4201~
9 40,353,607 1764 22,876~
10 282,475,249 2205 128,107~
11 1,977,326,743 2695 733,702~
12 13,841,287,201 3234 4,279,928~
⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

a Calculated by (see Eq. (6)).
b Calculated by Eq. (8).
c The quotient of the number in column 2 over that in column 3; it is equal to
7K K

K
2

2 2
γ = ·− !

( − ) ! !
.
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cost, here we do not discriminate the A–U with U–A, G–C with C–G
and G–U with U–G.

Based on the seven structure states, if the RNA sequence is
represented by a vector of Kmer (or K-tuple) composition (Chen
et al., 2014c; Liu et al., 2015d), we have

⎡
⎣⎢

⎤
⎦⎥f f f f fR 6

T

1
Kmer

2
Kmer

3
Kmer

4
Kmer

7
Kmer
K= ⋯

( )

where the symbol T is the transpose operator, fi
Kmerrepresents the

normalized occurrence frequency of the ith Kmer. As we can see
from Eq. (6), with the incensement of K values, although longer-
range information can be incorporated, the vector's dimension will
increase rapidly. For example, when K 8,= its dimension will be
7 10 5.75 10 ,8 8 log 7 610= > × causing the so-called “high-dimension
disaster” (Wang et al., 2008) or overfitting problem that will sig-
nificantly reduce the deviation tolerance or cluster-tolerant capa-
city (Chou, 1999) so as to lower down the prediction success rate
or stability. Therefore, Eq. (6) is useful only when the value of K is
very small. In other words, it can only be used to incorporate the
local or short-range sequence-order information, but certainly not
the global or long-range sequence-order information. To approxi-
mately cover the long-range sequence-order effects, one popular
and well-known method is to use the pseudo components that
were originally introduced in dealing with protein/peptide
sequences (Chou, 2001, 2005) and recently extended to deal with
DNA/RNA sequences (Chen et al., 2014b, 2014a, 2014c, 2015a,
2015b; Liu et al., 2015a, 2015b, 2015c, 2015d).

In this study, we would like to introduce a different approach,
which was inspired by the concept of “degenerate energy levels”.
As is well known, in quantum mechanics an energy level is
deemed as degenerate if it corresponds to two or more different
measurable states of a quantum system. The new concept intro-
duced here is called “Degenerate Kmer” or just “deKmer” for short,
by which we can still accommodate long-range information but
meanwhile also able to avoid the high dimension problem, as
elaborated below.

For an RNA sequence generated by the Vienna software
(Hofacker, 2003) as given by Eq. (4), its degenerated Kmers or
deKmers K 2( ≥ ) possess the following feature: two deKmers can
be deemed no different if they each have at least two base pairs
that are sequentially pairwise identical to each other regardless
whether the remaining K 2( − )base pairs have the same match or
not.

Thus, according to the concept of deKmer, instead of Eq. (6), we
have

⎡⎣ ⎤⎦R f f f f f 7
T

1
deKmer

2
deKmer

3
deKmer

4
deKmer deKmer= ⋯ ( )Ω

where

C
K

K
7 7

2 2 8K
2 2 2Ω = · = · !

( − )! ! ( )

is the number of all the possible different deKmers. The vector
formed by the deKmer components as defined in Eq. (7) is called
“deKmer vector”. Its dimension will be significantly reduced in
comparison with the dimension of the Kmer vector as defined in
Eq. (6).

For example, when K 4,= the dimension of the deKmer
composition vector (Eq. (7)) is 7 4 / 4 2 2 294,2Ω = × [ ! ( − )! !] =
whereas the dimension of the corresponding Kmer composition
vector (Eq. (6)) is 7 2401.4 = The latter is more than 8 times the
size of the former. For the case of K 5,= the dimension of the
deKmer composition vector is 7 5 / 5 2 2 4902Ω = × [ ! ( − )! !] = ,
whereas the dimension of the corresponding Kmer composition
vector is 7 16807.5 = The latter is more than 34 times the size
of the former. In other words, compared with Kmer, using
deKmer can substantially reduce the composition vector's
dimension. This is particularly true when the value of K con-
tinues increasing (Table 1).

Accordingly, hereafter, we shall use the deKmer vector (Eq. (7))
to formulate the RNA samples. By doing so, we can relax the
aforementioned limitation imposed on the value of K without
facing the high-dimension disaster trouble.
2.3. Support vector machine (SVM)

With the high quality benchmark dataset as given in Support-
ing information S1 and the RNA samples defined in a vector space
(Eq. (7)) to avoid the high-dimension disaster problem (Wang
et al., 2008), the next step is what kind of algorithm or operation
engine should be used to conduct the prediction (Chou, 2011).

SVM is a machine-learning algorithm based on the statistical
learning theory. It has been widely used in the realm of bioinfor-
matics (see, e.g., Chen et al., 2014a, 2014b; Lin et al., 2014; Liu
et al., 2014a, 2014b; Feng et al., 2013; Ding et al., 2014; Guo et al.,
2014; Fan et al., 2014; Xu et al., 2014a; Qiu and Xiao, 2014). The
basic idea of SVM is to construct a separating hyper-plane so as to
maximize the margin between the positive dataset and negative
dataset. The nearest two points to the hyper-plane are called
support vectors. SVM first constructs a hyper-plane based on the

training dataset, and then maps an input vector X
⇀
from the input

space into a vector in a higher dimensional Hillbert space, where
the mapping is determined by a kernel function. A trained SVM
can output a class label (in our case, pre-miRNA or false pre-
miRNA) based on the mapping vector of the input vector. In the
current study, the LIBSVM algorithm (Chang, 2009) was employed,
which is a software for SVM classification and regression. The
kernel function was set as Radial Basis Function (RBF) and the two
parameters C and γ were optimized on the benchmark dataset by
adopting the grid tool provide by LIBSVM (Chang, 2009.). For a
brief formulation of SVM and how it works, see the papers (Chou
and Cai, 2002; Cai and Zhou, 2003); for more details about SVM,
see a monograph (Cristianini and Shawe-Taylor, 2000).

The prediction method thus developed is called the deKmer
predictor.
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3. Results and discussion

3.1. Metrics used to measure the prediction quality

The current study belongs to a binary (two-lass) classification
problem; i.e., for a given segment of RNA sequence, whether its
outcome is positive (pre-miRNA) or negative (false pre-miRNA).
For this kind of binary classification problem, the following set of
metrics were often used to measure the prediction quality

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

Sn
TP

TP FN

Sp
TN

TN FP

Acc
TP TN

TP TN FP FN

MCC
TP TN FP FN

TP FP TP FN TN FP TN FN 9

=
+

=
+

= +
+ + +

= ( × ) − ( × )
( + ) ( + )( + )( + ) ( )

where TP represents the true positive; TN, the true negative; FP,
the false positive; FN, the false negative; Sn, the sensitivity; Sp, the
specificity; Acc, the accuracy; MCC, the Mathew's correlation
coefficient (Chen et al., 2007). The metrics formulated in Eq. (9) is
not easy-to-understand for most experimental scientists, and
hence here we would prefer to use the following formulation as
done by many investigators in a series of recent publications (see,
e.g., Lin et al., 2014; Chen et al., 2012, 2013; Xu et al., 2013a, 2013b,
2014a, 2014b; Qiu et al., 2014, 2015; Xiao et al., 2015; Guo et al.,
2014):

⎧
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where N+is the total number of the positive samples or pre-miR-
NAs investigated while N−

+ the number of pre-miRNA samples
incorrectly predicted to be of false pre-miRNA; N−the total number
of the negative samples or false pre-miRNAs investigated while N+

−

the number of the false pre-miRNAs incorrectly predicted to be of
pre-miRNA.

According to Eq. (10), it is crystal clear to see the following.
When N 0=−

+ meaning none of the pre-miRNAs was incorrectly
predicted to be a false pre-miRNA, we have the sensitivity Sn 1= .
When N N=−

+ + meaning that all the pre-miRNAs were incorrectly
predicted to be the false pre-miRNAs, we have the sensitivity
Sn 0= . Likewise, when N 0=+

− meaning none of the false pre-
miRNAs was mispredicted, we have the specificity Sp 1= ; whereas
N N=+

− − meaning that all the false pre-miRNAs were incorrectly
predicted as true pre-miRNAs, we have the specificity Sp 0= .
When N N 0= =−

+
+
− meaning that none of pre-miRNAs in the positive

dataset and none of the false pre-miRNAs in the negative dataset
were incorrectly predicted, we have the overall accuracy Acc 1=
and MCC 1= ; when N N=−

+ + and N N=+
− − meaning that all the pre-

miRNAs in the positive dataset and all the false pre-miRNAs in the
negative dataset were incorrectly predicted, we have the overall
accuracy Acc 0= and MCC 1= − ; whereas when N N /2=−

+ + and
N N /2=+
− − we have Acc 0. 5= and MCC 0= meaning no better than

random guess. As we can see from the above discussion, it would
make the meanings of sensitivity, specificity, overall accuracy, and
Mathew's correlation coefficient much more intuitive and easier-
to-understand by using the formulation of Eq. (10), particularly for
the meaning of MCC.

It should be pointed out, however, the set of metrics as defined
in Eq. (10) is valid only for the single-label systems. For the multi-
label systems whose emergence has become more frequent in
system biology (Chou et al., 2012; Lin et al., 2013; Xiao and Wu,
2011; Wang et al., 2015) and system medicine (Chou, 2015; Xiao
et al., 2013b), a completely different set of metrics as defined in
Chou (2013) is needed.

3.2. Method used to conduct cross validation

With the evaluation metrics available, the next thing is what
validation method should be used to derive the metrics values.

In statistical prediction, the following three cross-validation
methods are often used to derive the metrics values for a pre-
dictor: independent dataset test, subsampling (or K-fold cross-
validation) test, and jackknife test (Chou and Zhang, 1995). Of the
three methods, however, the jackknife test is deemed the least
arbitrary that can always yield a unique outcome for a given
benchmark dataset as elucidated in Chou (2011) and demonstrated
by Eqs. (28)–(32) therein. Accordingly, the jackknife test has been
widely recognized and increasingly used by investigators to
examine the quality of various predictors (see, e.g., (Xiao and Wu,
2011; Zhou and Assa-Munt, 2001; Hajisharifi et al., 2014; Mondal
and Pai, 2014; Dehzangi et al., 2015; Khan et al., 2015; Kumar et al.,
2015).

Accordingly, in this study we also use the jackknife test to
evaluate the accuracy of the current predictor. During the jackknife
test, each of the samples in the benchmark dataset is in turn
singled out as an independent test sample and all the rule-para-
meters are calculated without including the sample being identi-
fied. Although the jackknife test may take more computational
time, it is worthwhile because it will yield a unique outcome for a
given benchmark dataset.

3.3. Tested results of deKmer predictor and comparison with its
counterparts

At first, we investigated how different values of K would affect
the performance of the deKmer predictor. In this step, for reducing
computational time, the predictor was examined by the 5-fold
cross validation on the benchmark dataset S (cf. Eq. (1) as well as
the Online Supporting information S1). The results thus obtained
are given in Fig.2, from which we can see that, when K 8= , the
predictor's accuracy (Acc) reaches its peak, indicating that the
optimal K value for deKmer is 8 when it is trained by the current
benchmark dataset.

Subsequently, with K fixed at 8, the rigorous jackknife tests
were performed to calculate the Sn, Sp, Acc, and MCC as defined in
Eq. (10) for the deKmer predictor on the same benchmark dataset.
The results thus obtained are listed in Table 2, where for facil-
itating comparison, the corresponding results by the Kmer
approach and Triplet-SVM predictor (Xue et al., 2005) are also
given. As we can see from the table, the new deKmer predictor
outperformed its counterparts in all the four metrics.

Furthermore, the comparison was also made via a graphic plot
because it can provide intuitive insights useful for in-depth ana-
lyses of complicated biological systems (see, e.g., (Chou and For-
sen, 1980; Althaus et al., 1993; Chou, 2010; Zhou, 2011)). Depicted
in Fig.3 is the ROC (Receiver Operating Characteristic) plot (Faw-
cett, 2005); the larger the area under the curve, the better the



Fig. 2. An illustration to show how the accuracy (Acc) achieved by the deKmer
predictor varies with the values of K. See the text for further explanation.

Table 2
Comparison of the current deKmer predictor with its counterparts by the jackknife
tests on the same benchmark dataset (cf. the Online Supporting information S1).

Method Sn (%) Sp (%) Acc (%) MCC AUCa Running time (s)b

Kmerc 81.00 80.73 80.86 0.62 0.891 1258
Triplet-SVMd 78.47 85.20 81.85 0.64 0.894 35
deKmere 85.36 88.46 86.91 0.74 0.941 41

a AUC is the abbreviation of the “Area Under the Curve” for ROC (Receiver
Operating Characteristic) plot (Fawcett, 2005); the larger the value of AUC, the
better the corresponding predictor. See the main text for further explanation.

b The running (or CPU) time of converting all the 3224 samples in the
benchmark dataset into the feature vectors.

c See the paper (Fletez-Brant et al., 2013) and Eq. (6) for Kmer's definition. For
the current benchmark dataset S the highest success rates were reached when
K¼5.

d Results obtained by the in-house implemented Triplet-SVM (Xue et al., 2005)
on the same benchmark dataset.

e See Eqs. (7) and (8) with K¼8.

Fig. 3. A graphical illustration showing the performance of the new predictor
deKmer in comparison with its counterparts via the ROC (Receiver Operating
Characteristic) plot (Fawcett, 2005). See the footnote d of Table 2 as well as the
main text for further explanation.
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corresponding predictor (Fawcett, 2005). As we can see from the
figure, the area under the ROC curve of the new deKmer predictor
is remarkably greater than those of their counterparts, clearly
indicating a remarkable improvement of the deKmer predictor
over its counterparts.
3.4. Comparison of deKmer with other methods in computational
cost

To further indicate the advantage of the current method over
the existing ones, a comparison of deKmer with its counterparts in
CPU time was also made, as given in column 7 of Table 2. As we
can see there, the CPU time for Kmer (Fletez-Brant et al., 2013) is
1258 s, which is about 30-fold for the deKmer and 36-fold for
Triplet-SVM. This is because, as shown in Table 1, it needs to
generate 16,807-D feature vectors when K 5= , the optimal state
for Kmer (see the footnote “a” of Table 2). In contrast, for deKmar,
even when K 8= , it only needs to generate 1029-D feature vectors
(see Table 1). As for the Triplet-SVM, it only needs to generate 32-
D vectors. Although the CPU time is also quite short, only very
local or short-range coupling effects are incorporated, and hence
its prediction quality is lower than that of deKmer as shown in
Table 2. Therefore, the degenerate Kmer approach as formulated in
Eq. (8) not only has the advantage to enhance the prediction
quality by accommodating some longer-range coupling effects but
also can significantly reduce the computational time.

3.5. Cross-species experiments that show more power of deKmer

The current deKmer predictor was trained by the dataset that
contains the human samples only (cf. Supporting information S1).
What would happen when using it to identify the microRNA
precursors from other species or organisms? To address this pro-
blem, extended tests were performed for the predictor by 4022
pre-miRNA samples, of which 962 from Mus musculus, 277 from
Rattus norvegicus, 659 from Gallus gallus, 291 from Danio rerio,
175 from Caenorhabditis briggsae, 250 from Caenorhabditis ele-
gans, 210 from Drosophila pseudoobscura, 256 from Drosophila
melanogaster, 592 from Oryza sativa, 325 Arabidopsis thaliana,
and 25 Epstein Barr Virus (see Supporting information S2). All
these samples were taken from the latest miRBase (release 21:
June 2014), and none of them has 80%≥ pairwise sequence identity
with any other in the same species.

Listed in Table 3 are the results identified by the deKmer on the
4022 samples from the aforementioned eleven species, respec-
tively. From the table we can observe the following. (1) Of the
4022 miRNA precursors, 3497 were correctly identified; the
overall accuracy is 86.95%. (2) For the samples from some species,
such as Oryza sativa, Caenorhabditis briggsae, Arabidopsis thali-
ana, and Epstein Barr Virus, the success rates were remarkably
high, ranged from 93% to 100%. All these results indicate that,
although the DeKmer predictor was trained by the samples from
human species, it can be quite effectively applied to identify the
miRNA precursors for many other species as well.

Why the current deKmer trained with the samples from human
species can be so successfully used to identify the miRNA pre-
cursors of the other species? To address this problem, we calcu-
lated the sequence similarity scores between the human miRNAs
and the other eleven species' miRNAs respectively. The results thus
obtained are given in columns 5 and 6 of Table 3, from which we
can observe the following trend: the average scores for the cor-
rectly predicted samples is higher than those of the incorrectly
ones, implying that the sequence similarity still plays a dominant
role in using deKmer to identify the miRNA precursors of the other
species although some sort of flexibility would be allowed due to
the degenerate nature of the current deKmer.

3.6. Web-server for deKmer

To enhance its practical application value, a web-server for
deKmer has been established at http://bioinformatics.hitsz.edu.cn/
miRNA-deKmer/. Furthermore, to maximize the convenience of

http://bioinformatics.hitsz.edu.cn/miRNA-deKmer/
http://bioinformatics.hitsz.edu.cn/miRNA-deKmer/


Table 3
Results obtained by the deKmer predictor trained with human samples in identifying the microRNA precursors from eleven other species.

Species Number of microRNA precursors Number of correct identification Acc (%) Similarity score Aa (%) Similarity score Bb (%)

Mus musculus 962 794 82.54 20.69 14.68
Rattus norvegicus 277 240 86.64 33.33 16.05
Gallus gallus 659 504 76.48 20.42 14.22
Danio rerio 291 271 93.13 25.20 22.2
Caenorhabditis briggsae 175 165 94.29 15.73 13.8
Caenorhabditis elegans 250 226 90.40 16.60 13.21
Drosophila pseudoobscura 210 186 88.57 15.19 13.83
Drosophila melanogaster 256 221 86.33 15.12 12.57
Oryza sativa 592 551 93.07 18.03 12.95
Arabidopsis thaliana 325 314 96.62 19.30 12.55
Epstein Barr Virus 25 25 100 15.32 N/A
Total 4022 3497 86.95

a The average sequence alignment score between the correctly predicted samples in the cross-species datasets and the samples in the benchmark dataset S of deKmer
taken from human species.

b The average sequence alignment score between the incorrectly predicted samples in cross-species datasets and the samples in the benchmark dataset S of deKmer
taken from human species.
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most experimental scientists, a built-in Guide window is provided
therein. By clicking it, users can easily get their desired results
without the need to go through the detailed mathematical equa-
tions presented in this paper. By clicking the Benchmark Data
window, users can download the data used to train and test the
deKmer predictor.

Since the idea of deKmer approach can also be applied to many
other areas of computational biology, its software package is
available upon request.
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