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Identification of protein-protein binding sites by incorporating the physicochemical properties
and stationary wavelet transforms into pseudo amino acid composition
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Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia; cGordon Life Science Institute, Boston, MA 02478,
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With the explosive growth of protein sequences entering into protein data banks in the post-genomic era, it is highly
demanded to develop automated methods for rapidly and effectively identifying the protein–protein binding sites
(PPBSs) based on the sequence information alone. To address this problem, we proposed a predictor called iPPBS-
PseAAC, in which each amino acid residue site of the proteins concerned was treated as a 15-tuple peptide segment
generated by sliding a window along the protein chains with its center aligned with the target residue. The working pep-
tide segment is further formulated by a general form of pseudo amino acid composition via the following procedures:
(1) it is converted into a numerical series via the physicochemical properties of amino acids; (2) the numerical series is
subsequently converted into a 20-D feature vector by means of the stationary wavelet transform technique. Formed by
many individual “Random Forest” classifiers, the operation engine to run prediction is a two-layer ensemble classifier,
with the 1st-layer voting out the best training data-set from many bootstrap systems and the 2nd-layer voting out the
most relevant one from seven physicochemical properties. Cross-validation tests indicate that the new predictor is very
promising, meaning that many important key features, which are deeply hidden in complicated protein sequences, can be
extracted via the wavelets transform approach, quite consistent with the facts that many important biological functions of
proteins can be elucidated with their low-frequency internal motions. The web server of iPPBS-PseAAC is accessible at
http://www.jci-bioinfo.cn/iPPBS-PseAAC, by which users can easily acquire their desired results without the need to
follow the complicated mathematical equations involved.

Keywords: protein–protein binding sites; physicochemical property; stationary wavelet transform; pseudo amino acid
composition; random forest; asymmetric bootstrap

1. Introduction

All cellular processes depend on precisely orchestrated
interactions between proteins (Chou & Cai, 2006). A
critical step in understanding the biological function of a
protein is identification of the interface sites on which it
interacts with other protein(s). Characterization of protein
interactions is important for many problems covering
from rational drug design to analysis of various biologi-
cal networks (see, e.g. Fan, Xiao, & Min, 2014; Min,
Xiao, & Chou, 2013; Xiao, Min, Lin, & Liu, 2015;
Xiao, Min, & Wang, 2013a, 2013c; Zhong & Zhou,
2014; Zhou, 2015). The number of experimentally deter-
mined structures of protein–protein and protein–ligand
complexes is still quite small, as reflected by the fact that
the entries in UniprotKB/Swissprot (UniProt, 2013) is
much larger than that in the Protein Data Bank (Berman
et al., 2000). The limited availability of structures often
restricts the identification of binding sites of proteins and
their functional annotation. Furthermore, the chemical or

biological experimental methods are expensive, time-con-
suming and labor-intensive. Therefore, as a complement
to the experimental methods, it is highly demanded to
develop computational methods for identifying the pro-
tein–protein binding sites (PPBSs) according to their
sequences information alone (Gallet, Charloteaux,
Thomas, & Brasseur, 2000; Valencia & Pazos, 2002).

Given a protein sequence, how can we identify
which of its constituent amino acid residues are located
in the binding site? Ofran and Rost (2003) and Yan,
Dobbs, and Honavar (2004) have reported the following
findings: (1) the residues involved in this kind of interac-
tions usually tend to form clusters in sequences within
four neighboring residues on either side; and (2)
97–98% of interface residues have at least one additional
interface residue and 70–74% have at least four
additional interface residues. Their analysis indicates that
the neighboring residues of an actual interface residue
have higher potential for being the interface residues,
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suggesting that fragments of protein sequences (referred
to as sub-sequences hereafter) may contain useful infor-
mation or features for discriminating between interaction
and non-interaction sites. Several approaches have been
proposed for predicting protein–protein interaction sites
from amino acid sequence. Kini and Evans (1996), based
on their observations on the frequency of proline resi-
dues occurring near the interaction sites, proposed a
method for predicting the potential PPBSs by detecting
the presence of proline bracket. Shortly afterward, using
the multiple sequence alignment to detect correlated
changes of the interacting protein domains, Pazos, Hel-
mer-Citterich, Ausiello, and Valencia (1997) offered a
different method to predict the contacting residue pairs.
In 2000, Gallet et al. (2000) introduced an approach to
identify the interacting residues by analyzing the
sequence hydrophobicity with the method developed by
Eisenberg, Schwarz, Komaromy, and Wall (1984). In
2003, Ofran and Rost (2003) used sub-sequences of nine
consecutive residues to develop a neural network-based
method with a post-processing filter to predict interface
residues. Subsequently, Yan et al. (2004) also used sub-
sequence of nine residues to develop a two-stage classi-
fier by combining support vector machine (SVM) and
Bayesian network classifiers, achieving a higher accu-
racy. Two years later, Wang et al. (2006) also developed
a predictor in this regard by using SVM with features
extracted from spatial sequence and evolutionary scores
based on a phylogenetic tree.

Since the three-dimensional (3D) structures are
unknown for most of proteins, the sequence-based
method plays an important role in protein binding site
prediction. Unfortunately, several issues (Chen & Jeong,
2009; Sikic, Tomic, & Vlahovicek, 2009) exist that have
made the sequence-based approach particularly difficult.
The main problems are as follows: (i) the effective fea-
tures common to all the binding sites are hard to extract
because the biological properties responsible for protein–
protein interacting are not fully understood; (ii) the
prediction of binding sites is to deal with a highly
imbalanced classification problem because the number of
non-binding sites of a protein pair is substantially larger
than that of binding ones, and hence prone to cause bias;
(iii) there is no good benchmark data-set due to lack of a
unique definition for the binding sites, as reflected by the
fact that one definition of the binding sites is based on
the distance between the carbon atoms concerned, but
another on the change of the accessible surface area
(ASA) value between the bounded and unbounded
status.

The present study was initiated in an attempt to
develop a new approach to predict the PPBSs in hope to
help deal with the aforementioned problems.

As demonstrated in a series of recent publications
(Ding, Deng, Yuan, & Liu, 2014; Jia, Liu, & Xiao,

2015; Liu, Fang, Liu, & Wang, 2015; Liu, Fang, Liu,
Wang, & Chen, 2015; Liu, Fang, Wang, & Wang, 2015;
Liu, Xu, Lan, Xu, & Zhou, 2014; Qiu, Xiao, & Lin,
2015; Xu, Wen, Wen, & Wu, 2014; Xu, Zhou, Liu, He,
& Zou, 2015) in using Chou’s 5-step rule (Chou, 2011),
to develop a really useful sequence-based predictor for a
biological system, we should make the following five
procedures very clear: (1) how to construct or select a
valid benchmark data-set to train and test the predictor;
(2) how to formulate the biological sequence samples
with an effective mathematical expression that can truly
reflect their intrinsic correlation with the target to be pre-
dicted; (3) how to introduce or develop a powerful algo-
rithm (or engine) to operate the prediction; (4) how to
properly perform cross-validation tests to objectively
evaluate its anticipated accuracy; (5) how to establish a
user-friendly web-server that is accessible to the public.
Below, we are to address the five procedures one-by-one.

2. Materials and methods

2.1. Benchmark data-set

Two benchmark data-sets were used for the current
study. One is the “surface-residue” data-set and the other
is “all-residue” data-set, as elaborated below.

The protein–protein interfaces are usually formed by
those residues, which are exposed to the solvent after the
two counterparts are separated from each other. Given a
protein sample with L residues as expressed by

P ¼ R1R2R3R4R5R6R7 � � �RL (1)

where R1 represents the 1st amino acid residue of the
protein P, R2 the 2nd residue, and so forth. The residue
Riði ¼ 1; 2; . . .; LÞ is deemed as a surface residue if it
satisfies the following condition

/ðRiÞ ¼ ASAðRijPÞ
ASAðRiÞ [ 25% (2)

where ASA(Ri|P) is the ASA of Ri when it is a part of
protein P, ASA(Ri) is the accessible surface area of the
free Ri that is actually its maximal ASA as given in
Table 1 (Ofran & Rost, 2003), and / Rið Þ is the ratio of
the two. Furthermore, the surface residue Ri is deemed
as interfacial residue (Jones & Thornton, 1996) if

ASAðRijPÞ � ASAðRijPPÞ[ 1Å
2

(3)

where ASA(Ri|PP) is the accessible surface area of Ri

when it is a part of protein–protein complex.
For a given protein, we can use DSSP program

(Kabsch & Sander, 1983) to find out all its surface resi-
dues based on Equation (2), and use PSAIA program
(Mihel, Šikić, Tomić, Jeren, & Vlahovicek, 2008) to find
all its interfacial residues based on Equation (3).

2 J. Jia et al.
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If only considering the surface residues as done in Wang,
Huang, and Jiang (2014) for the 99 polypeptide chains
extracted by Deng, Guan, Dong, and Zhou (2009) from the
54 heterocomplexes in Protein Data Bank, we have
obtained the results that can be formulated as follows:

Ssurf ¼ S
þ
surf [ S

�
surf (4)

where Ssurf is called the “surface-residue data-set” that
contains a total of 13,771 surfaces residues, of which
2,828 are interfacial residues belonging to the positive
subset S

þ
surf , while 10,943 are non-interfacial residues

belonging the negative subset S�surf , and [ is the symbol
of union in the set theory.

If considering all the residues as done in Chen and
Jeong (2009), however, the corresponding benchmark
data-set can be expressed by

Sall ¼ S
þ
all [ S

�
all (5)

where Sall is called the “all-residue data-set” that con-
tains a total of 27,442 residues, of which 2828 are inter-
facial residues belonging to the positive subset S

þ
all,

while 24,614 are non-interfacial residues belonging the
negative subset S�all.

For readers’ convenience, given in S1 Data-set is a
combination of the two benchmark data-sets, where those
labeled in column 3 are all the residues determined by
experiments, those in column 4 are of surface and non-
surface residues, and those in column 5 are of interface
and non-interface residues.

As pointed out in a comprehensive review (Chou &
Shen, 2007a), there is no need to separate a benchmark
data-set into a training data-set and a testing data-set for
examining the quality of a prediction method if it is
tested by the jackknife test or subsampling (K-fold)
cross-validation test because the outcome thus obtained
is actually from a combination of many different inde-
pendent data-set tests.

2.2. Flexible sliding window approach

For a protein chain as formulated by Equation (1), the
sliding window approach (Chou, 2001a) and flexible
sliding window approach (Chou & Shen, 2007b) are

often used to investigate its various post-translational
modification (PTM) sites (see, e.g. Qiu, Xiao, & Lin,
2014; Qiu et al., 2015; Xu, Ding, & Wu, 2013; Xu,
Shao, Wu, Deng, 2013; Xu, Wen, & Shao, 2014; Xu,
Wen, Wen, et al., 2014) and HIV (human immunodefi-
ciency virus) protease cleavage sites (Chou, 1996). Here,
we also use it to study PPBSs. In the sliding window
approach, a scaled window is denoted by �n;þn½ �
(Chou, 2001a). Its width is 2nþ 1, where n is an integer.
When sliding it along a protein chain P (Equation (1)),
one can see through the window a series of consecutive
peptide segments as formulated by

PnðR0Þ ¼ R�nR�ðn�1Þ � � �R�2R�1R0Rþ1Rþ2 � � �Rþðn�1ÞRþn

(6)

where R�n represents the n-th upstream amino acid residue
from the center, Rþn the n-th downstream amino acid resi-
due, and so forth. The amino acid residue R0 at the center
is the targeted residue. When its sequence position in P
(cf. Equation (1)) is less than n or greater L� n; the corre-
sponding Pn R0ð Þ is defined, instead by P of Equation (1),
but by the following dummy protein chain

PðdummyÞ ¼ Rn � � �R2R1

m R1R2 � � �Rn � � �Ri � � �RL�nþ1 � � �RL�1RL

m RLRL�1 � � �RL�nþ1

(7)

where the symbol ⇕ stands for a mirror, the dummy
segment Rn � � �R2R1 stands for the image of R1R2 � � �Rn

reflected by the mirror, and the dummy segment
RLRL�1 � � �RL�nþ1 for the mirror image of
RL�nþ1 � � �RL�1RL (Figure 1). Accordingly, P(dummy)
of Equation (7) is also called the mirror-extended chain
of protein P.

Thus, for each of the L amino acid residues in pro-
tein P (Equation (1)), we have a working segment as
defined by Equation (6). In the current study, the
2nþ 1ð Þ-peptides PnðR0Þ can be further classified into
the following categories:

PnðR0Þ 2 Pþ
n ðR0Þ; if its center is a PPBS

P�
n ðR0Þ; otherwise

�
(8)

where ∈ represents “a member of” in the set theory.

Table 1. Maximum ASA of different amino acids.a

AA A B C D E F G H I K L M

MaxASA 106 160 135 163 194 197 84 184 169 205 164 188

AA N P Q R S T V W X Y Z
MaxASA 157 136 198 248 130 142 142 227 180 222 196

Note: B stands for D or N; Z for E or Q, and X for an undetermined amino acid.aAmino acids are represented by their one-letter codes.

Identification of protein–protein binding sites 3
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2.3. Using pseudo amino acid composition to
represent peptide chains

One of the most challenging problems in computational
biology today is how to effectively formulate the sequence
of a biological sample (such as protein, peptide, DNA, or
RNA) with a discrete model or a vector that can consider-
ably keep its sequence order information or capture its key
features. The reasons are as follows. (1) If using the
sequential model, i.e. the model in which all the samples
are represented by their original sequences, it is hardly
able to train a machine that can cover all the possible cases
concerned, as elaborated in Chou (2011). (2) All the exist-
ing computational algorithms, such as optimization
approach (Zhang & Chou, 1992), correlation-angle
approach (Chou, 1993), covariance discriminant (Chou &
Elrod, 2002), neural network (Feng, Cai, & Chou, 2005),
K-nearest neighbor (KNN) (Shen, Yang, & Chou, 2006),
OET-KNN (Shen & Chou, 2009b), SLLE algorithm
(Wang, Yang, & Xu, 2005), SVM (Lin, Deng, Ding, &
Chen, 2014; Xu et al., 2015), random forest (RF) (Lin,
Fang, & Xiao, 2011), conditional random field (Xu, Ding,
et al., 2013), nearest neighbor (Cai & Chou, 2003), Fuzzy
KNN (Xiao, Min, & Wang, 2013b), and ML-KNN algo-
rithm (Xiao, Wu, & Chou, 2011), can only handle vector
but not sequence samples.

However, a vector defined in a discrete model may
completely lose the sequence-order information. To cope
with such a dilemma, the approach of pseudo amino acid
composition (Chou, 2001c, 2005) or Chou’s PseAAC
(Cao, Xu, & Liang, 2013; Du, Wang, Xu, & Gao, 2012;
Lin & Lapointe, 2013) was proposed. For a brief intro-
duction about PseAAC, see a Wikipedia article at http://
en.wikipedia.org/wiki/Pseudo_amino_acid_composition.
Ever since it was introduced in 2001 (Chou, 2001c), the
concept of PseAAC has been widely used to represent
protein/peptide sequences in nearly all the areas of
computational proteomics, such as in predicting protein

subcellular location in various organisms and levels (Li
et al., 2014; Mei, 2012; Nanni & Lumini, 2008; Shen,
Yang, & Chou, 2007; Wang, Zhang, Zhang, & Li, 2015;
Zhang, Zhang, Yang, Zhao, & Pan, 2008; Zuo et al.,
2014), predicting protein structural class (Kong, Zhang,
& Lv, 2014; Zhang, Zhao, & Kong, 2014), predicting
membrane protein types (Chou & Cai, 2005; Han, Yu, &
Anh, 2014), predicting antifreeze proteins (Mondal &
Pai, 2014), predicting anticancer peptides (Hajisharifi,
Piryaiee, Mohammad Beigi, Behbahani, & Mohabatkar,
2014), identifying bacterial virulent proteins (Nanni,
Lumini, Gupta, & Garg, 2012), discriminating outer
membrane proteins (Hayat & Khan, 2012), analyzing
genetic sequence (Georgiou, Karakasidis, & Megaritis,
2013), identifying cyclin proteins (Mohabatkar, 2010),
predicting GABA(A) receptor proteins (Mohabatkar,
Mohammad Beigi, & Esmaeili, 2011), identifying
antibacterial peptides (Khosravian, Faramarzi, Beigi,
Behbahani, & Mohabatkar, 2013), identifying allergenic
proteins (Mohabatkar, Beigi, Abdolahi, & Mohsenzadeh,
2013), predicting metalloproteinase family (Mohammad
Beigi, Behjati, & Mohabatkar, 2011), identifying GPCRs
and their types (Zia-ur-Rehman & Khan, 2012), identify-
ing protein quaternary structural attributes (Chou & Cai,
2003; Sun et al., 2012), identifying risk type of human
papillomaviruses (Esmaeili, Mohabatkar, & Mohsen-
zadeh, 2010), identifying various PTM (post-translational
modification) sites in proteins (Jia, Lin, & Wang, 2014;
Qiu, Xiao, & Lin, 2014; Qiu et al., 2015; Xu, Ding,
et al., 2013; Xu, Shao, et al., 2013; Zhang, Zhao, Sun,
& Ma, 2014), among many others (see a long list of ref-
erences cited in Chen, Lin, and Chou [2015] published
very recently). It has also been used in some disciplines
of drug development and biomedicine (Zhong & Zhou,
2014) as well as drug target area (Chou, 2015). Recently,
the concept of PseAAC was further extended to repre-
sent the feature vectors of DNA/RNA sequences for
studying various problems in computational genetics/ge-
nomics or performing genome analysis (see, e.g. (Chen,
Feng, and Lin [2013]; Chen, Feng, and Lin [2014];
Chen, Lei, and Jin [2014]; Chen, Feng, Deng, and Lin
[2014]; Chen, Feng, Ding, and Lin [2015]; Guo, Deng,
Xu, and Ding [2014]; Lin et al. [2014]; Liu, Liu, Fang,
and Wang [2015a, 2015b]; Liu, Liu, Wang, Chen, and
Fang [2015]; Liu, Xiao, and Qiu [2015]; Qiu, Xiao, and
Chou [2014] as well as a recent review Chen, Lin, et al.
[2015]). Because it has been widely and increasingly
used, five types of open access software, called
“PseAAC” (Shen & Chou, 2008), “PseAAC-Builder”
(Du et al., 2012), “propy” (Cao et al., 2013), “PseAAC-
General” (Du, Gu, & Jiao, 2014), and
“Pse-in-One” (Liu, Liu, Wang, et al., 2015) were estab-
lished: the former three are for generating various modes
of Chou’s special PseAAC; the 4th one for those of
Chou’s general PseAAC; the 5th one can generate all the

ξ… 2 1 R1 R2…Rξ…Ri…RL-ξ+1…RL-1 RL

  

L L-1… L-ξ+1

  

N C 

Original 
protein 
sequence 

N-terminus mirror 
reflected part 

C-terminus mirror 
reflected part 

Dummy 
segment 

Real chain  Dummy 
segment 

Figure 1. A schematic drawing to show how to use the
extended chain of Equation (7) to define the working segments
of Equation (6) for those sites when their sequence positions in
the protein are less than n or greater L� n, where the left
dummy segment stands for the mirror image of R1R2 � � �Rn at
N-terminus and the right dummy segment for that of
RL�nþ1 � � �RL�1RL at the C-terminus.

4 J. Jia et al.

D
ow

nl
oa

de
d 

by
 [

K
in

g 
A

bd
ul

az
iz

 U
ni

ve
rs

ity
] 

at
 0

1:
07

 2
1 

A
pr

il 
20

16
 

http://en.wikipedia.org/wiki/Pseudo_amino_acid_composition
http://en.wikipedia.org/wiki/Pseudo_amino_acid_composition


pseudo components for protein/peptide as well as DNA/
RNA sequences.

According to Chou (2011), PseAAC can be generally
formulated as

P ¼ ½W1W2 � � �Wu � � �WX�T (9)

where T is the transpose operator, while X an integer to
reflect the vector’s dimension. The value of X as well as
the components Wu ¼ ðu ¼ 1; 2; � � � ;XÞ in Equation (9)
will depend on how to extract the desired information
from a peptide sequence. Below, we are to describe how
to extract the useful information from the aforementioned
benchmark data-sets (cf. Equations (4) and (5)) to define
the working peptides via Equation (9). For the
convenience of formulation below, we convert
2nþ 1ð Þ-peptide in Equation (6) to

Pn ¼ R1R2R3R4R5R6R7 � � �Rð2nþ1Þ (10)

2.3.1. Physicochemical properties

Different types of amino acid in the above equation may
have different physicochemical properties. In this study,
we considered the following seven physicochemical
properties: (1) hydrophobicity (Tanford, 1962) or Uð1Þ;
(2) hydrophicility (Hopp & Woods, 1981) orUð2Þ; (3)

side-chain volume (Krigbaum & Knutton, 1973) or Uð3Þ;
(4) polarity (Grantham, 1974) or Uð4Þ; (5) polarizability
(Charton & Charton, 1982) or Uð5Þ; (6) solvent-accessi-
ble surface area (SASA) (Rose, Geselowitz, Lesser, Lee,
& Zehfus, 1985) or Uð6Þ; and (7) side-chain net charge
index (NCI) (Zhou, Tian, Li, Wu, & Li, 2006) or Uð7Þ.
Their numerical values are given in Table 2. Thus, the
peptide segment Pn of Equation (10) can be encoded into
seven different numerical series, as formulated by

Pn ¼

Uð1Þ
1 Uð1Þ

2 Uð1Þ
3 Uð1Þ

4 Uð1Þ
5 Uð1Þ

6 Uð1Þ
7 � � �U1

2nþ1

Uð2Þ
1 Uð2Þ

2 Uð2Þ
3 Uð2Þ

4 Uð2Þ
5 Uð2Þ

6 Uð2Þ
7 � � �Uð2Þ

2nþ1

Uð3Þ
1 Uð3Þ

2 Uð3Þ
3 Uð3Þ

4 Uð3Þ
5 Uð3Þ

6 Uð3Þ
7 � � �Uð3Þ

2nþ1

Uð4Þ
1 Uð4Þ

2 Uð4Þ
3 Uð4Þ

4 Uð4Þ
5 Uð4Þ

6 Uð4Þ
7 � � �Uð4Þ

2nþ1

Uð5Þ
1 Uð5Þ

2 Uð5Þ
3 Uð5Þ

4 Uð5Þ
5 Uð5Þ

6 Uð5Þ
7 � � �Uð5Þ

2nþ1

Uð6Þ
1 Uð6Þ

2 Uð6Þ
3 Uð6Þ

4 Uð6Þ
5 Uð6Þ

6 Uð6Þ
7 � � �Uð6Þ

2nþ1

Uð7Þ
1 Uð7Þ

2 Uð7Þ
3 Uð7Þ

4 Uð7Þ
5 Uð7Þ

6 Uð7Þ
7 � � �Uð7Þ

2nþ1

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(11)

where Uð1Þ
1 is the hydrophobicity value of R1 in Equation

(9), Uð2Þ
2 the hydrophilicity value of R2, and so forth.

Note that before substituting the physicochemical values
of Table 2 into Equation (10), they all are subjected to
the following standard conversion

UðuÞ
i ( Uu

i � hUu
i i

SDðUu
i Þ

ðu ¼ 1; 2; . . .; 7; i ¼ 1; 2; . . .; 2nþ 1Þ
(12)

Table 2. The original values of the seven physicochemical properties for each amino acid.

Amino acid code

Physicochemical property (cf. Equation (11))a

Uð1Þ Uð2Þ Uð3Þ Uð4Þ Uð5Þ Uð6Þ Uð7Þ
H1 H2 V P1 P2 SASA NCI

A 0.62 −0.5 27.5 8.1 0.046 1.181 0.007187
C 0.29 −1.0 44.6 5.5 0.128 1.461 −0.03661
D −0.9 3.0 40.0 13.0 0.105 1.587 −0.02382
E −0.74 3.0 62.0 12.3 0.151 1.862 0.006802
F 1.19 −2.5 115.5 5.2 0.29 2.228 0.037552
G 0.48 0.0 0.0 9.0 0.0 0.881 0.179052
H −0.4 −0.5 79.0 10.4 0.23 2.025 −0.01069
I 1.38 −1.8 93.5 5.2 0.186 1.81 0.021631
K −1.5 3.0 100.0 11.3 0.219 2.258 0.017708
L 1.06 −1.8 93.5 4.9 0.186 1.931 0.051672
M 0.64 −1.3 94.1 5.7 0.221 2.034 0.002683
N −0.78 2.0 58.7 11.6 0.134 1.655 0.005392
P 0.12 0.0 41.9 8.0 0.131 1.468 0.239531
Q −0.85 0.2 80.7 10.5 0.18 1.932 0.049211
R −2.53 3.0 105.0 10.5 0.291 2.56 0.043587
S −0.18 0.3 29.3 9.2 0.062 1.298 0.004627
T −0.05 −0.4 51.3 8.6 0.108 1.525 0.003352
V 1.08 −1.5 71.5 5.9 0.14 1.645 0.057004
W 0.81 −3.4 145.5 5.4 0.409 2.663 0.037977
Y 0.26 −2.3 117.3 6.2 0.298 2.368 0.023599

aH1, hydrophobicity; H2, hydrophilicity; V, volume of side chains; P1, polarity; P2, polarizability; SASA, solvent accessible surface area; NCI, net
charge index of side chains.
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where the symbol h i means taking the average for the
quantity therein over the 20 amino acid types, and SD
means the corresponding standard deviation. The converted
values via Equation (12) will have zero mean value over the
20 amino acid types, and will remain unchanged if they go
thru the same standard conversion procedure again.

2.3.2. Stationary wavelet transform approach

The low-frequency internal motion is a very important
feature of biomacromolecules (see, e.g. (Gordon, 2008;
Madkan, Blank, Elson, Geddis, & Goodman, 2009; Mar-
tel, 1992) as well as a Wikipedia article at http://en.wiki
pedia.org/wiki/Low-frequency_collective_motion_in_pro
teins_and_DNA). Many marvelous biological functions
in proteins and DNA and their profound dynamic mecha-
nisms, such as switch between active and inactive states
(Wang & Chou, 2009; Wang, Gong, Wei, & Li, 2009),
cooperative effects (Chou, 1989a), allosteric transition
(Chou, 1987; Schnell & Chou, 2008; Wang & Chou,
2010), intercalation of drugs into DNA (Chou & Mao,
1988), extra electron motion in DNA (Zhou, 1989), and
assembly of microtubules (Chou, Zhang, & Maggiora,
1994), can be revealed by studying their low-frequency
internal motions as summarized in a comprehensive
review (Chou, 1988). Low-frequency Fourier spectrum
was also used by Liu, Wang, and Chou (2005) to
develop a sequence-based method for predicting mem-
brane protein types. In view of this, it would be intrigu-
ing to introduce the stationary wavelet transform (SWT)
into the current study.

The SWT (Shensa, 1992) is a wavelet transform
algorithm designed to overcome the lack of shift-invari-
ance of the discrete wavelet transform (DWT) (Mallat,
1989). Shift-invariance is achieved by removing the
downsamplers and upsamplers in the DWT and upsam-
pling (insert zero) the filter coefficients by a factor of
2j�1in the jth level of the algorithm. The SWT is an
inherently redundant scheme as the output of each level
of SWT contains the same number of samples as the
input; so for a decomposition of N levels, there is a
redundancy of N in the wavelet coefficients. Shown in
Figure 2 is the block diagram depicting the digital imple-
mentation of SWT. As we can see from the figure, the
input peptide segment is decomposed recursively in the
low-frequency part.

The concrete procedure of using the SWT to denote
the 2nþ 1ð Þ-tuple peptides is as follows. For each of the
2nþ 1ð Þ-tuple peptides generated by sliding the scaled
window �n;þn½ � along the protein chain concerned, the
SWT was used to decompose it based on the amino acid
values encoded by the seven physicochemical properties
as given in Equation (11). Daubechies of number 1
(Db1) wavelet was selected because its wavelet possesses
a lower vanish moment and easily generates non-zero

coefficients for the ensemble learning framework that
will be introduced later.

In the preliminary study, we tested the sensitivity of
the predicted outcome versus the value of parameter n
from 4 to 10, and observed that when n ¼ 7; i.e. the
working segments are of 15-tuple peptides, the outcomes
thus obtained were most promising, as shown in Figure 3.
Accordingly, we only consider the case of n ¼ 7 here-
after.

Using the SWT approach, we have generated 5 sub-
bands (Figure 2), each of which has four coefficients: (1)
ai, the maximum of the wavelet coefficients in the sub-
band ið1; 2; . . .5Þ; (2) bi;the corresponding mean of the
wavelet coefficients; (3) ci, the corresponding minimum
of the wavelet coefficients; (4) di, the corresponding
standard deviation of the wavelet coefficients. Therefore,
for each working segment, we can get a feature vector
that contains X ¼ 5� 4 ¼ 20 components by using each
of the seven physicochemical properties of Equation
(11). In other words, we have seven different modes of
PseAAC as given below:

PðkÞ ¼ ½WðkÞ
1 WðkÞ

2 WðkÞ
3 � � � WðkÞ

i � � � WðkÞ
20 �T

ðk ¼ 1; 2; � � � ; 7Þ (13)

where

WðkÞ
u ¼

aðkÞu when1� u� 5
bðkÞu�5 when 6� u� 10

kðkÞu�10 when11� u� 15

dðkÞu�15 when11� u� 20

8>>><
>>>:

(14)

2.4. Ensemble RF algorithm

The RF algorithm is a powerful algorithm, which has
been used in many areas of computational biology (see,

Figure 2. A schematic drawing to illustrate the procedure of
multi-level SWT (stationary wavelets transform). See Equations
(10)–(12) as well as the relevant text for further explanation.
For more detailed explanation about SWT, see Nanson and Sil-
verman (1995).
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e.g. Kandaswamy, Martinetz, Moller, Sridharan, & Puga-
lenthi, 2011; Lin et al., 2011; Pugalenthi, Kandaswamy,
Vivekanandan, & Kolatkar, 2012). The detailed proce-
dures and formulation of RF have been very clearly
described in Breiman (2001), and hence there is no need
to repeat here.

It should be pointed out, however, that the number
of negative samples in the current case is much larger
than that of positive ones, and most classifiers (including
RF) are usually working properly for the benchmark
data-sets consisting of balanced subsets. To deal with
such a situation, an asymmetric bootstrap approach was
adopted as elaborated in Jia, Xiao, Liu and Jiao (2011)
and illustrated in Figure 4. As shown from the figure, in
order to construct a balanced data-set to train each of the
sub-classifiers, we randomly picked the negative training
samples from S

�
all or S

�
surf making them have the same

number of the corresponding positive samples in S
þ
all or

S
þ
surf , respectively
Also, as shown in Equation (13), a peptide segment

concerned in the current study can be formulated with
seven different PseAAC modes, each of which can be
used to train the RF predictor. Accordingly, we have a
total of seven individual predictors for identifying PPBS,
as formulated by:

PPBS individual predictor ¼ RF kð Þ k ¼ 1; 2; . . .; 7Þ
(15)

where RFðkÞ represents the RF predictor based on the k-
th physicochemical property (cf. Equation (13)).

Now, the problem is how to combine the results from
the seven individual predictors to maximize the predic-
tion quality. As indicated by a series of previous studies,
using the ensemble classifier formed by fusing many
individual classifiers can remarkably enhance the success
rates in predicting protein subcellular localization (Chou
& Shen, 2006, 2007c) and protein quaternary structural
attribute (Shen & Chou, 2009a). Encouraged by the

Figure 3. A histogram to show the results of AUC (Fawcett, 2005) obtained by using different values of n for the working peptides.
As we can see, when n ¼ 7, i.e. the working segments are of 2nþ 1ð Þ = 15-tuple peptides (cf. Equation (10)), the outcomes thus
obtained were most promising. For more explanation, see the text in the Section 2.2 and the legend of Figure 6 later.

Figure 4. A flowchart to illustrate the 1st-layer ensemble clas-
sifier, a voting system by using the bootstrap approach to deal
with the situation when the number of negative samples is
overehelmingly larger than that of positive ones, as done in Jia
et al. (2011). In the figure, RF denoted the RF classifier, Sþ

denotes either S
þ
surf or S

þ
all, and S

� denotes either S
�
surf or S

�
all

(cf. Equations (4)–(5)). See the text for more explanation.
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previous investigators’ studies, here we are also develop-
ing an ensemble classifier by fusing the seven individual
predictors RF kð Þðk ¼ 1; 2; . . .; 7Þ through a voting sys-
tem, as formulated by:

RF
E ¼ RF 1ð Þ8 � � � 8RF 7ð Þ ¼ 87k¼1RFðkÞ (16)

where RF
E stands for the ensemble classifier, and the

symbol ∀ for the fusing operator. For the detailed proce-
dures of how to fuse the results from the seven individ-
ual predictors to reach a final outcome via the voting
system, see Equations (30)–(35) in Chou and Shen
(2007a), where a crystal clear and elegant derivation was
elaborated and hence there is no need to repeat here. To
provide an intuitive picture, a flowchart is given in
Figure 5 to illustrate how the seven individual RF
predictors are fused into the ensemble classifier.

The final predictor thus obtained is called “iPPBS-
PseAAC”, where “i” stands for “identify”, “PPBS” for
“protein–protein binding site”, and “PseAAC” for
“pseudo amino acid composition” approach.

3. Result and discussion

As pointed out in the Introduction section, one of the
important procedures in developing a predictor is how to
properly and objectively evaluate its anticipated success
rates (Chou, 2011). Toward this, we need to consider the
following two aspects: one is what kind of metrics
should be used to quantitatively measure the prediction
accuracy; the other is what kind of test method should
be adopted to derive the metrics values, as elaborated
below.

3.1. Success rate metrics and validation approach

For measuring the success rates in identifying PPBS, a
set of four metrics are often used in the literature. They
are: (1) overall accuracy or Acc, (2) Mathew’s correla-
tion coefficient or MCC, (3) sensitivity or Sn, and (4)
specificity or Sp (see, e.g. Chen, Liu, & Yang, 2007).
Unfortunately, the conventional formulations for the four
metrics are not quite intuitive for most experimental sci-
entists, particularly the one for MCC. Interestingly, by
using the symbols and derivation as used in Chou
(2001a) for studying signal peptides, the aforementioned
four metrics can be formulated by a set of equations
given below (Chen et al., 2013; Lin et al., 2014; Qiu,
Xiao, & Chou, 2014):

Sn ¼ 1� Nþ
�

Nþ 0� Sn� 1

Sp ¼ 1� N�
þ

N� 0� Sp� 1

Acc ¼ K ¼ 1� Nþ
�þN�

þ
NþþN� 0�Acc� 1

MCC ¼ 1�ðNþ�
Nþþ

N�
þ

N�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þN�

þ�Nþ�
Nþ Þð1þNþ��N�

þ
N� Þ

q �1�MCC� 1

8>>>>>>><
>>>>>>>:

(17)

where N+ represents the total number of PPBSs investi-
gated, whereas Nþ

� the number of true PPBSs incorrectly
predicted to be of non-PPBS; N- the total number of the
non-PPBSs investigated, whereas N�

þ the number of
non-PPBSs incorrectly predicted to be of PPBS.

According to Equation (17), it is crystal clear to see
the following. When Nþ

� ¼ 0 meaning none of the true
PPBSs are incorrectly predicted to be of non-PPBS, we
have the sensitivity Sn ¼ 1. When Nþ

� ¼ Nþ meaning
that all the PPBSs are incorrectly predicted to be of non-
PPBS, we have the sensitivity Sn ¼ 0. Likewise, when
N�
þ = 0 meaning none of the non-PPBSs are incorrectly

predicted to be of PPBS, we have the specificity Sp ¼ 1;
whereas N�

þ = N− meaning that all the non-PPBSs are
incorrectly predicted to be of PPBS, we have the speci-
ficity Sp ¼ 0. When Nþ

� ¼ N�
þ ¼ 0 meaning that none of

PPBSs in the positive data-set and none of the non-
PPBSs in the negative data-set are incorrectly predicted,
we have the overall accuracy Acc ¼ 1 and MCC ¼ 1;
when Nþ

� ¼ Nþ and N�
þ = N� meaning that all the

PPBSs in the positive data-set and all the non-PPBSs in
the negative data-set are incorrectly predicted, we have
the overall accuracy Acc ¼ 0 and MCC ¼ �1; whereas
when Nþ

� ¼ Nþ=2 and N�
þ = N-/2, we have Acc ¼ 0:5

and MCC ¼ 0 meaning no better than random guess. As
we can see from the above discussion, it would make
the meanings of sensitivity, specificity, overall accuracy,
and Mathew’s correlation coefficient much more intuitive
and easier-to-understand by using Equation (17),
particularly for the meaning of MCC.

It should be pointed out, however, the set of metrics
as defined in Equation (17) is valid only for the

Figure 5. A flowchart to illustrate the 2nd-layer ensemble
classifier that exploits all the different groups of features, where
D(1) means the decision made by RFð1Þ, D(2) means the deci-
sion made by RFð2Þ, and so forth. See the text as well as
Equations (11) and (15) for further explanation.
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single-label systems. For the multi-label systems whose
emergence has become more frequent in system biology
(Chou, Wu, & Xiao, 2012; Lin, Fang, & Xiao, 2013;
Xiao et al., 2011) and system medicine (Xiao, Wang,
Lin, & Jia, 2013), a completely different set of metrics
as defined in Chou (2013) is needed.

With the evaluation metrics available, the next thing
is what validation method should be used to generate the
metrics values.

In statistical prediction, the following three cross-val-
idation methods are often used to derive the metrics val-
ues for predictor: independent data-set test, subsampling
(or K-fold cross-validation) test, and jackknife test (Chou
& Zhang, 1995). Of the three methods, however, the
jackknife test is deemed the least arbitrary that can
always yield a unique outcome for a given benchmark
data-set as elucidated in Chou (2011) and demonstrated
by Equations (28)–(32) therein. Accordingly, the jack-
knife test has been widely recognized and increasingly
used by investigators to examine the quality of various
predictors (see, e.g. Chou & Cai, 2005; Dehzangi et al.,
2015; Hajisharifi et al., 2014; Khan, Hayat, & Khan,
2015; Kumar, Srivastava, Kumari, & Kumar, 2015; Mon-
dal & Pai, 2014; Shen et al., 2007; Xiao et al., 2011).
However, to reduce the computational time, in this study
we adopted the 10-fold cross-validation, as done by most
investigators with SVM and RFs algorithms as the pre-
diction engine. In the 10-fold cross-validation test, all
the samples in the benchmark data-set are divided into
10 approximately equal-sized subsets. And then each of
the 10 subsets will be singled out one-by-one and tested
by the predictor trained with the samples in the remain-
ing subsets. The performance measures are then calcu-
lated as an average over the 10 different single-out
subsets or divisions. In other words, during the process
of 10-fold cross-validation, both the training data-set and
testing data-set are actually open, and each subset will
be in turn moved between the two. The 10-fold cross-
validation test can exclude the “memory” effect, just like
conducting 10 different independent data-set tests.

3.2. Comparison with the existing methods

Listed in Table 3 are the values of the four metrics (cf.
Equation (17)) obtained by the current iPPBS-PseAAC
predictor using the 10-fold cross-validation on the sur-
face-residue benchmark data-set Ssurf (Equation (4)) and
the all-residue benchmark data-set Sall (Equation (5)),
respectively. See S1 Data-set for the details of the two
benchmark data-sets. For facilitating comparison, the cor-
responding results obtained by the existing methods
(Chen & Jeong, 2009; Deng et al., 2009) are also given
there.

As we can see from the table, the new predictor
iPPBS-PseAAC proposed in this paper remarkably out-
performed its counterparts, particularly in Acc and MCC;
the former stands for the overall accuracy, and the latter
for the stability. At the first glance, although the value of
Sn by Deng et al.’s method (Deng et al., 2009) is higher
than that of the current predictor when tested by the sur-
face-residue benchmark data-set, its corresponding Sp
value is more than 30% lower than that of the latter,
indicating the method (Deng et al., 2009) is very unsta-
ble with extremely high noise.

Because graphic approaches can provide useful intu-
itive insights (see, e.g. Althaus et al., 1993; Chou,
1989b, 2010; Chou & Forsen, 1980; Wu, Xiao, & Chou,
2010; Zhou, 2011), here we also provide a graphic com-
parison of the current predictor with their counterparts
via the receiver operating characteristic (ROC) plot
(Fawcett, 2005), as shown in Figure 6. According to
ROC (Fawcett, 2005), the larger the area under the curve
(AUC), the better the corresponding predictor is. As we
can see from the figure, the area under the ROC curve
of the new predictor is remarkably greater than those of
their counterparts fully consistent with the AUC values
listed on Table 3, once again indicating a clear improve-
ment of the new predictor in comparison with the exist-
ing ones.

All the above facts have shown that iPPBS-PseAAC
is really a very promising predictor for identifying
PPBSs. Or at the very least, it can play a complementary

Table 3. Comparison of the iPPBS-PseAAC with the other existing methods via the 10-fold cross-validation on the surface-residue
benchmark data-set (Equation (4)) and the all-residue benchmark data-set (Equation (5)).

Benchmark data-set Method Acc (%) MCC Sn (%) Sp (%) AUC

Surface-residue Denga N/A .3456 76.77 63.16 .7976
Chenb 75.09 .4248 43.81 92.12 .8004

iPPBS-PseAACc 84.90 .5862 60.56 93.49 .8828

All-residue Denga N/A .3763 76.33 78.61 .8465
Chenb 73.77 .3286 24.95 96.52 .8001

iPPBS-PseAACc 84.88 .4554 38.00 96.62 .8709

Note: Text in bold inicates the predictor proposed in this paper and its results.
aResults reported by Deng et al. (2009).
bResults reported by Chen and Jeong (2009).
cResults obtained by the current predictor using the same cross-validation method on the same benchmark data-set.
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role to the existing prediction methods in this area. Par-
ticularly, none of the existing predictors has provided a
web server. In contrast to this, a user-friendly and publi-
cally accessible web server has been established for
iPPBS-PseAAC at http://www.jci-bioinfo.cn/iPPBS-
PseAAC, which is no doubt very useful for the majority
of experimental scientist in this or related areas without
the need to follow the complicated mathematical equa-
tions.

Why could the proposed method be so powerful?
This is because many key features, which are deeply hid-
den in complicated protein sequences, can be extracted
via the wavelets transform approach. Just like in dealing
with the extremely complicated internal motions of pro-
teins, it is the key to grasp the low-frequency collective
motion (Gordon, 2008; Madkan et al., 2009) for in-depth
understanding or revealing the dynamic mechanisms of
their various important biological functions (Chou,
1988), such as cooperative effects (Chou, 1989a), allos-
teric transition (Chou, 1987; Schnell & Chou, 2008),

assembly of microtubules (Chou et al., 1994), and switch
between active and inactive states (Wang & Chou,
2009). Furthermore, a dual ensemble technique was used
in this study: one for dealing the unbalanced training
data-set via a bootstrap voting system (Figure 4), and
one for selecting the most relevant one from seven
classes of different physicochemical properties (Figure 5).

3.3. Web server and user guide

As emphasized in a recent review (Chou, 2015), an open
accessible web-server is very important for the impact of
a prediction method. To enhance the value of its practi-
cal applications, the web-server for iPPBI-PseAAC has
been established at http://www.jci-bioinfo.cn/iPPBS-
PseAAC. Furthermore, to maximize the convenience for
the majority of experimental scientists, a step-to-step
guide is provided below.

Step 1. Opening the web-server at http://www.jci-
bioinfo.cn/iPPBD-PseAAC, you will see the top page of
iPPBS-PseAAC on your computer screen, as shown in
Figure 7. Click on the Read Me button to see a brief
introduction about the PPBS-PseAAC predictor.

Step 2. Either type or copy/paste the query protein
sequences into the input box at the center of Figure 7.
The input sequence should be in the FASTA format. A
sequence in FASTA format consists of a single initial
line beginning with the symbol, >, in the first column,
followed by lines of sequence data in which amino acids
are represented using single-letter codes. Except for the
mandatory symbol >, all the other characters in the sin-
gle initial line are optional and only used for the purpose

Figure 6. The ROC curves to show the 10-fold cross-valida-
tion by iPPBS-PseAAC, Deng et al.’s method (Deng et al.,
2009), and Chen et al.’s method (Chen & Jeong, 2009) on (a)
surface-residue benchmark data-set, and (b) the all-residue
benchmark data-set. As shown on the figure, the area under the
ROC curve for iPPBS-PseAAC is obviously larger than those
of their counterparts, indicating a clear improvement of the
new predictor in comparison with the existing ones.

Figure 7. A semi-screenshot of the top page for the web ser-
ver iPPBS-PseAAC at http://www.jci-bioinfo.cn/iPPBS-
PseAAC.
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of identification and description. The sequence ends if
another line starting with the symbol > appears; this indi-
cates the start of another sequence. For the examples of
sequences in FASTA format, click the Example button
right above the input box.

Step 3. Click on the Submit button to see the pre-
dicted result. For example, if you use the two query pro-
tein sequences in the Example window as the input, after
20 s or so, you will see the following on the screen of
your computer: (1) Sequence-1 contains 63 amino acid
residues, of which 19 are highlighted with red, meaning
belonging to binding site. (2) Sequence-2 contains 224
residues, of which 11 are highlighted with red, belonging
binding site. All these predicted results are fully consis-
tent with experimental observations except for residues
44 and 63 in sequence-1 and residues 52 in sequence-2
that are overpredicted.

Step 4. As shown on the lower panel of Figure 7,
you may also choose the batch prediction by entering
your email address and your desired batch input file (in
FASTA format of course) via the “Browse” button. To
see the sample of batch input file, click on the button
Batch-example.

Step 5. Click on the Citation button to find the rele-
vant papers that document the detailed development and
algorithm of iPPBS-PseAAC.

Step 6. Click the Supporting Information button to
download the benchmark data-set used in this study.

4. Conclusion

In the new PPBS predictor, each of the protein residue
sites investigated is treated as a 15-tuple peptide gener-
ated by sliding the scaled window [−7,+7] (Chou,
2001b) along a protein chain with its center aligned with
the amino acid residue concerned. The working peptide
segment is further formulated by a general form of
PseAAC via the following procedures: (1) it is converted
into a numerical series via the physicochemical proper-
ties of amino acids; (2) the numerical series is subse-
quently converted into a 20-D feature vector by means
of the SWT technique.

The operation engine to run the PPBS prediction is a
dual ensemble formed by two voting systems with one
for finding the best training data-set and the other for
finding the most relevant physicochemical property.

It was demonstrated via cross-validations that the
new predictor established with the above procedures is
very powerful and promising. We anticipate that iPPBS-
PseAAC predictor will become a very useful high
throughput tool for identifying PPBSs, or at the very
least, a complementary tool to the existing prediction
methods in this area.

Supplementary material

The supplementary material for this paper is avail-
able online at http://dx.doi.org/10.1080/07391102.2015.
1095116.
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