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Some remarks on predicting multi-label attributes in
molecular biosystems

Kuo-Chen Chou*ab

Many molecular biosystems and biomedical systems belong to the multi-label systems in which each of

their constituent molecules possesses one or more than one function or feature, and hence needs one or

more than one label to indicate its attribute(s). With the avalanche of biological sequences generated in

the post genomic age, it is highly desirable to develop computational methods to timely and reliably

identify their various kinds of attributes. Compared with the single-label systems, the multi-label systems

are much more complicated and difficult to deal with. The current mini review focuses on the recent

progresses in this area from both conceptual aspects and detailed mathematical formulations.

I. Introduction

Many molecules in biosystems or biomedical systems possess
multiplex features.

It has been observed that an increasing number of proteins
have multiple locations in a cell,1 meaning that they can

simultaneously reside at, or move between, two or more differ-
ent subcellular locations. Proteins with multiple location sites
or dynamic features of this kind are particularly interesting
because they may have some unique biological functions
worthy of our special notice.2 For example, of the 3106 human
proteins investigated in ref. 3, 2580 occur in one location;
480 in two locations; 43 in three locations, and 3 in 4 locations.
Of the 5048 animal proteins investigated in ref. 4, 2284 occur in
one subcellular location, 1740 in two locations, 510 in three
locations, 368 in four locations, 111 in five locations, 20 in six
locations, 9 in seven locations, and 6 in eight locations.

According to the ATC (Anatomical Therapeutic Chemical)
classification system recommended by the World Health Organiza-
tion, drugs are generally classified into the following 14 main ATC-
groups based on their therapeutic, pharmacological and chemical
properties (http://www.whocc.no/atc/structure_and_principles/)
(1) alimentary tract and metabolism; (2) blood and blood
forming organs; (3) cardiovascular system; (4) dermatologicals;
(5) genitourinary system and sex hormones; (6) systemic
hormonal preparations, excluding sex hormones and insulins;
(7) antiinfectives for systemic use; (8) antineoplastic and immuno-
modulating agents; (9) musculoskeletal system; (10) nervous
system; (11) antiparasitic products, insecticides and repellents;
(12) respiratory system; (13) sensory organs; (14) various. Some
drugs may belong to more than one main ATC-class. For
example of the 3883 drugs investigated in ref. 5, 3295 occur
in one class, 370 in two classes, 110 in three classes, 37 in four
classes, 27 in five classes, and 44 in six classes.

Antimicrobial peptides (AMPs), also called host defense
peptides, are an evolutionarily conserved component of the
innate immune response and are found among all classes of
life. According to their special functions, AMPs are generally
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classified into the following ten types:6 (1) antibacterial
peptides; (2) anticancer/tumor peptides; (3) antifungal pep-
tides; (4) anti-HIV peptides; (5) antiviral peptides; (6) antipar-
asital peptides; (7) anti-protist peptides; (8) AMPs with
chemotactic activity; (9) insecticidal peptides; (10) spermicidal
peptides. Some AMPs may belong to two or more functional
types. For example, of the 878 AMPs investigated in ref. 7, 454
belong to one functional type, 296 to two different types, 85 to
three types, 30 to four types, and 13 to five types.

The aforementioned examples actually belong to the so-called
‘‘multi-label system’’ because each of the constituent members
therein may need one or more than one label to indicate its
attribute(s). With the avalanche of biological sequences gener-
ated in the post genomic age, it is highly desirable to develop
computational methods to timely and reliably identify their
various kinds of attributes. Compared with single-label systems,
multi-label systems are much more complicated and difficult to
deal with. Therefore, many approaches used to deal with the
former would be no longer valid for the latter. The present review
focuses on what kind of special attention is needed when dealing
with the multi-label systems.

II. Number of virtual samples

In developing a statistical prediction method for a given
attribute, the first important thing is to construct a benchmark
dataset S according to its possible classification; i.e.,

S = S1[S2[S2[S3[S4[S5. . .[SM (1)

where S1 represents the subset for category 1 of the attribute,
S2 for category 2, and so forth; while [ represents the symbol
for ‘‘union’’ in the set theory, and M the total number of
different categories for the attribute concerned. For example,
when the attribute concerned was about the subcellular locali-
zation of eukaryotic proteins as investigated in ref. 8, M would
be 22 as illustrated in Fig. 1; when the attribute concerned was
about the subcellular localization of animal proteins as inves-
tigated in ref. 4, M would be 20; when the attribute concerned
was about the ATC groups of drugs investigated in ref. 5,
M would be 14; and so forth.

Because a sample in a multi-label system may have two or
more labels to annotate its classification, it is useful to intro-
duce the concept of ‘‘virtual sample’’ as briefed below. If a
sample is marked with two different labels, it will be counted as
two virtual samples; if marked with three different labels, it will
be counted as three virtual samples; and so forth. Thus, the
number of total virtual samples, N(vir), can be expressed as

NðvirÞ ¼
XN

k¼1 n
LðkÞ (2)

where nL(k) is the number of different labels ‘‘attached’’ on the
kth sample in S. On the other hand, the number of total virtual
samples can also be expressed as9

NðvirÞ ¼ N þ
XM
m¼1

m� 1ð ÞnðmÞ (3)

where N represents the number of total different samples, n(1)
the number of samples with one single label, n(2) the number
of samples with two labels, and n(m) the number of samples
with m(rM) labels; while M is the number of total different
classes investigated.

As we can see from eqn (3), the number of the total virtual
samples is always greater than that of the total number of
different samples. When, and only when, all the samples have a
single label, i.e. n(m) = 0 when m Z 2, can the two be the same.

III. Multiplicity degree

To quantitatively reflect the extent of multiplicity for a bench-
mark dataset S, let us introduce the multiplicity degree MD(S),
which is actually the quotient of the number of total virtual
samples N(vir) divided by the number of total different samples
N. Thus, according to eqn (2) and (3), it can be calculated by

MD Sð Þ ¼ NðvirÞ
N

¼ 1þ

PM
m¼1

m� 1ð ÞnðmÞ

N
¼
PN

k¼1 n
LðkÞ

N
(4)

where all the symbols have exactly the same meanings as in
eqn (2) and (3). As we can see from eqn (4), when all the
samples in S have only one single label, we have MD(S) = 1;
when all the samples in S have two labels, MD(S) = 2; and so
forth. Therefore, the closer to 1 the multiplicity degree is, the
fewer the number of samples in S that have multi-labels.

For example, the multiplicity degree for the system investi-
gated in ref. 3 was 3681/3106 = 1.1851; that for the system
investigated in ref. 5 was 4912/3883 = 1.2650; that for
the system investigated in ref. 7 was 1486/878 = 1.6925; and
that for the system investigated in ref. 4 was 9522/5048 =
1.8922.

IV. Prediction of multi-label attributes

Various classifiers were developed for predicting the multi-label
attributes in different molecular biosystems. For example, for
predicting the subcellular localization of singleplex and multi-
plex eukaryotic proteins, the iLoc-Euk classifier8 was proposed
based on the ‘‘multi-label K-nearest neighbor’’ algorithm. For
predicting the subcellular locations of animal proteins with
both single and multiple sites, the iLoc-Animal classifier4

was proposed based on the ‘‘accumulation-label K-nearest
neighbor’’ algorithm. For identifying the functional types
of antimicrobial peptides (AMPs), the iAMP-2L classifier7

was proposed based on the ‘‘fuzzy K-nearest neighbor’’
algorithm.7 Here, let us give a brief introduction about the
iLoc-Animal classifier4 through which we can see how a multi-
label classifier works.

To develop a classifier for a biological system, one of the
keys is to formulate the biological samples with an effective
mathematical expression that can truly reflect their intrinsic
correlation with the attribute to be identified. Such a mathe-
matical expression is usually a feature vector. If the biological
samples are proteins or peptides, their feature vector can be
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expressed by a general form of pseudo amino acid composition
(PseAAC),10 as given by11

P = [c1 c2� � �cu� � �cO]T (5)

where P represents a protein or peptide sample, T is the
transposing operator, the subscript O is an integer, and its value
as well as the components cu (u = 1,2,� � �,O) will depend on how
to extract the desired information from the amino acid sequence
of P. For different objects or targets, the components cu may
have different implications (see, e.g., ref. 12–29). Actually, the
concept of PseAAC and eqn (5) were not only limited to protein
and peptide sequences. Recently, they were also extended to
represent the feature vectors of DNA and nucleotides,30,31 as well
as other biological samples (see, e.g., ref. 32 and 33).

For the iLoc-Animal classifier, the general form of PseAAC
(eqn (5)) was defined by a combination of a gene ontology
approach and a sequential evolution approach.4 Once the feature
vector has been defined to represent the protein samples, the
next thing we need to consider is how to introduce an algorithm
to operate the statistical prediction, as described below.

Suppose the mth subset Sm of S (eqn (1)) contains Nm

proteins, and P(m,j) is the jth protein in that subset, and its
feature vector is defined through the same procedure as that of
P and hence also has the form of eqn (5). Thus, the similarity
between P and P(m,j) can be defined by

D{P,P(m,j)} = ||P � P(m,j)|| (6)

where ||P � P(m,j)|| represents the module of the vector differ-
ence between P and P(m,j) in the Euclidean space. According to

eqn (6), when P � P(m,j) we have D{P,P(m,j)} = 0, indicating that
the distance between these two protein sequences is zero and
hence they have perfect or 100% similarity.

Suppose P#
1, P#

2, � � �, P#
K are the K nearest neighbor proteins to

the protein P and they form a set denoted by SP
K, which is a

subset of S (cf. eqn (1)); i.e.,SP
K D S.

Based on the K nearest neighbor proteins in SP
K, the

‘‘accumulation-label scale’’ is defined as given by

QðP;KÞ ¼ rK1 r
K
2 � � � rKm � � � rKM

� �
(7)

where

rm ¼
PK

i¼1 dðP
#
i ;mÞ

N
#
K

ðm ¼ 1; 2; � � � ;MÞ (8)

where

dðP#
i ;mÞ ¼

1; if P#
i is labeledwith themth location

0; otherwise

8<
: (9)

and

N
#
K ¼

XM
m¼1

XK
i¼1

dðP#
i ;mÞ (10)

Note that N#
K Z K because a protein may have more than one

subcellular location label in the current system.
Now, for a query protein P, its subcellular location(s) will be

predicted according to the following steps.

Fig. 1 Schematic illustration to show the 22 subcellular locations of eukaryotic proteins: (1) acrosome, (2) cell membrane, (3) cell wall, (4) centriole, (5) chloroplast, (6)
cyanelle, (7) cytoplasm, (8) cytoskeleton, (9) endoplasmic reticulum, (10) endosome, (11) extracellular, (12) Golgi apparatus, (13) hydrogenosome, (14) lysosome, (15)
melanosome, (16) microsome (17) mitochondria, (18) nucleus, (19) peroxisome, (20) spindle pole body, (21) synapse, and (22) vacuole. Adapted from ref. 39 with permission.
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Step 1. The number of different subcellular locations it
belongs to will be determined by its nearest neighbor protein
in S (cf. eqn (1)). For example, suppose P# is the nearest protein
to P in S. If P# has only one location label, i.e., belongs to only
one subcellular location, then P will be predicted belonging to
only one location; if P# has two subcellular locations, then P will
also have two locations; and so forth. Therefore, in general
we have

M(P) = M(P#) (11)

where M(P#) is an integer (rM) representing the number of
different subcellular locations to which P# belongs, and M(P)
represents the number of different subcellular locations to
which P belongs.

Step 2. The actual location site(s) where P resides will not be
determined by the location site(s) of P#, but by the element(s) of
the accumulation-label scale of eqn (7) that has (have) the
highest score(s), as can be expressed by {l}, the subscript(s)
of eqn (1). For example, if P is found belonging to only one
location in Step 1, i.e., M(P) = 1, and the highest score in eqn (7)
is rK

3, then P will be predicted as {l} = {3} meaning that it
belongs to S3 or resides at the ‘‘Centriole’’ (cf. Table 1). If P is
found belonging to four locations, i.e., M(P) = 4, and the first
four highest scores in eqn (7) are rK

1, rK
8, rK

15 and rK
20, then P will

be predicted as {l} = {1, 8, 15, 20} meaning that it belongs to S1,
S8, S15 and S20 or resides simultaneously at the ‘‘Acrosome’’,
‘‘Endoplasmic reticulum’’, ‘‘Microsome’’, and ‘‘Synapse’’
(cf. Table 1), and so forth. In other words, the actual predicted
subcellular location(s) for P can be formulated as

‘f g ¼Max x
MðPÞ
Sub rK1 r

K
2 � � � rKm � � � rKM

� �
ðMðPÞ �MÞ (12)

where the operator ‘‘Max xM(P)
Sub ’’ means identifying the M(P)

highest scores for the elements in the brackets right after them,
followed by taking their M(P) subscripts. The value for the
parameter K in eqn (12) will be determined by optimizing the
overall jackknife11 success rate on the benchmark dataset S.

V. Metrics for measuring the prediction
quality of a multi-label system

For a multi-label system S consisting of N different samples,
suppose L is the label set that contains all the possible labels
for S. Obviously, we have

||L|| = M (13)

where || || is the operator acting on the set therein to count the
number of its elements, and M has the same meaning as in
eqn (1). Thus, the kth sample Pk and its label(s) can be
expressed by

{Pk,Lk} (k = 1, 2,� � �, N) (14)

where Lk is the subset that contains all the labels for the kth
sample Pk. Obviously, we have

L1[L2[� � �[LNDL = {l1,l2,� � �lM} (15)

where l1 is the 1st label in S, l2 is the 2nd label, and so forth,
while the symbol D means ‘‘being the subset of’’.

Suppose L�k represents the subset that contains all the
predicted labels for the kth sample Pk. Note that the predicted
labels of a protein sample are usually not the same as its real
labels. Only when the prediction is perfectly correct, will the
two subsets Lk and L�k be the same (for further explanation, see
Fig. 2 and its legend). Thus, we can have the following five
metrics to measure the prediction quality for the multi-label
system:

Aiming ¼ 1

N

PN
k¼1

Lk \ L�k
�� ��

L�k
�� ��

 !

Coverage ¼ 1

N

PN
k¼1

Lk \ L�k
�� ��

Lk

�� ��
 !

Accuracy ¼ 1

N

PN
k¼1

Lk \ L�k
�� ��

Lk [ L�k
�� ��

 !

Absolute-True ¼ 1

N

PN
k¼1 DðLk; L

�
kÞ

Absolute-False ¼ 1

N

PN
k¼1

Lk [ L�k
�� ��� Lk \ L�k

�� ��
M

� �

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

(16)

where N and M have the same meanings as in eqn (3), [ is the
symbol of union in the set theory, \ is the intersection symbol,
|| || has the same meaning as in eqn (13), and

DðLk; L
�
kÞ ¼

1; if all the labels in Lk are identical to those in L�k

0; otherwise

(

(17)

Table 1 The multi-label system S contains 5048 animal proteins classified into
20 subcellular location sites. Of the 5048 proteins, 2284 occur in one subcellular
location, 1740 in two locations, 510 in three locations, 368 in four locations, 111
in five locations, 20 in six locations, 9 in seven locations, 6 in eight locations, and
none in nine or more locations. Reproduced from ref. 4 with permission

Subset Subcellular location or label Number of proteins

S1 Acrosome 87
S2 Cell membrane 1096
S3 Centriole 75
S4 Centrosome 243
S5 Cell cortex 108
S6 Cytoplasm 2170
S7 Cytoskeleton 729
S8 Endoplasmic reticulum 541
S9 Endosome 185
S10 Extracellular space 105
S11 Golgi apparatus 413
S12 Lysosome 136
S13 Mitochondrion 595
S14 Melanosome 49
S15 Microsome 71
S16 Nucleus 1458
S17 Peroxisome 81
S18 Plasma membrane 1096
S19 Spindle 159
S20 Synapse 155
Total different virtual or locative proteins 9552
Total different proteins 5048
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For readers’ convenience, the symbols used in eqn (16) are
illustrated in Fig. 2, from which we can easily see that the rates
of all the above five metrics are within the range of 0–1
(or 0–100%).

In eqn (16) the ‘‘Aiming’’ rate (also called ‘‘Precision’’34) is to
reflect the average ratio of the correctly predicted labels over the
predicted labels; i.e., to measure the percentage of the pre-
dicted labels that hit the target of the real labels.

The ‘‘Coverage’’ rate (also called ‘‘Recall’’34) is to reflect the
average ratio of the correctly predicted labels over the real
labels; i.e., to measure the percentage of the real labels that
are covered by the hits of prediction.

The ‘‘Accuracy’’ rate is to reflect the average ratio of correctly
predicted labels over the total labels including correctly and
incorrectly predicted labels as well as those real labels but are
missed in the prediction.

Compared with the aforementioned three rates in eqn (16)
that are actually used to reflect the ratios of corrected
predictions from different angles, the ‘‘Absolute-True’’ rate
(or ‘‘Subset-Accuracy’’34), is the most intuitive and easier-to-
understand one for a multi-label system. According to its
definition (see the 4th equation of eqn (16)), for a query sample,
e.g., the kth sample, when and only when all its labels are
exactly predicted without any underprediction (the number of
predicted labels is less than the number of real labels) or
overprediction (the number of predicted labels is more than
the number of real labels), i.e., Lk � L�k (cf. eqn (17)), can the
prediction event be scored with 1; otherwise, 0. For example, for
a sample having, say, four labels, if three of the four are
correctly predicted, or the predicted result contains a label
not one of the four, the prediction score will be counted as 0.3,8

Therefore, the absolute true rate is much more strict and harsh
than the other metrics such as aiming rate, coverage rate, and
accuracy rate used previously.35,36 For the absolute true rate, if
the labels of a query sample were partially correctly predicted,
no score at all would be credited; but for the other metrics
rates, a corresponding proportional score would be credited.

The last equation in eqn (16) is the formulation for the
‘‘Absolute-False’’ (also called ‘‘Hamming-Loss’’37) that is com-
pletely opposite to the other four metrics. As can be easily seen
from its formulation, when the multi-labels for all the samples

are correctly predicted, i.e., Lk � L�k or Lk [ L�k
�� �� ¼ Lk \ L�k

�� ��
(k = 1, 2, � � �, N), the rate of absolute-false is equal to 0. When
each of the samples Pk (k = 1, 2, � � �, N) is wrongly predicted
having all the possible labels except its own true label(s), i.e.,
Lk \ L�k ¼+ (where + means the empty set) and Lk [ L�k ¼ L,

or Lk [ L�k
�� �� ¼M and Lk \ L�k

�� �� ¼ 0, the rate of absolute-false

is equal to 1. Therefore, the lower the absolute-false rate is, the
better the prediction quality will be. However, for the other four
metrics, the meanings of their rates are just opposite; i.e., the
higher their rates are, the better the prediction quality will be.

For example, for the multi-label system S investigated in
ref. 4 that contains N = 5048 protein samples, of which 2284
were each located in one subcellular location site and hence
with one single label, 1740 were each located at two different
subcellular locations and hence with two labels, 510 with three
labels, 368 with four labels, 111 with five labels, 20 with six
labels, 9 with seven labels, 6 with eight labels, and none with
nine or more labels. Substituting these data into eqn (3),
we have

NðvirÞ ¼ N þ ð1� 1Þ � 2284þ ð2� 1Þ � 1740

þ ð3� 1Þ � 510þ ð4� 1Þ � 368þ ð5� 1Þ

� 111þ ð6� 1Þ � 20þ ð7� 1Þ � 9

þ ð8� 1Þ � 6þ
X20

m¼9 ðm� 1Þ � 0

¼ 5048þ 1740þ 1020þ 1104þ 444

þ 100þ 54þ 42 ¼ 9552

(18)

meaning that the 5048 proteins cover M = 20 different sub-
cellular locations via N(vir) = 9552 virtual proteins, fully con-
sistent with the data in Table 1.

The rates for the five metrics achieved by the predictor iLoc-
Animal developed in ref. 4 on such a multi-label system were

Aiming ¼ 0:7356

Coverage ¼ 0:6949

Accuracy ¼ 0:6288

Absolute-True ¼ 0:4562

Absolute-False ¼ 0:0518

8>>>>>>>>>><
>>>>>>>>>>:

(19)

from which we can see that 73.56% of the predicted labels
(or subcellular locations) hit the real labels, that 69.49% of the
real labels are covered by the prediction, and that 62.88% of all

Fig. 2 Schematic drawing to show the meanings of some set theory symbols
used in eqn (16): Lk represents the subset that contains all the label(s) for the kth
sample; L�k , the subset that contains all the predicted label(s) for the kth sample.
Union of the subsets Lk and L�k , denoted Lk [ L�k , is the set of all labels that are a

member of Lk, or L�k, or both. Intersection of the subsets Lk and L�k, denoted

Lk \ L�k , is the set of all labels that are members of both Lk and L�k. For example, if

Lk = {l1,l2,l3} contains ||Lk|| = 3 labels and L�k ¼ f‘2; ‘3; ‘4g also contains L�k
�� �� ¼ 3

labels, their union Lk [ L�k ¼ f‘1; ‘2; ‘3; ‘4g will contain Lk [ L�k
�� �� ¼ 4 labels; while

their intersection Lk \ L�k ¼ f‘2; ‘3g will contain Lk \ L�k
�� �� ¼ 2 labels. Therefore,

when Lk and L�k are perfectly identical to each other, we should have

Lk [ L�k ¼ Lk \ L�k .
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the possible labels are correctly predicted. It can be also seen
from eqn (19) that the overall absolute-true rate is 45.62% while
the overall absolute-false rate is 5.18%, indicating that even if
the prediction reaches accuracy over 62.0% with the absolute-
false rate under 5.2%, its absolute-true rate is only 45.62%.

The difficulty in obtaining a high absolute-true rate using a
predictor for a multi-label system can also been seen from
Table 2. It lists not only the absolute-true rate predicted by iLoc-
Animal but also the absolute rates reported by IMMMLGP38 and
Hum-mPLoc2.0,36 two powerful predictors developed recently
that are also able to deal with a system with both single- and
multiple-location proteins. As we can see from the table, the
absolute-true success rates predicted by IMMMLGP38 and Hum-
mPLoc2.036 were, respectively, 27.40% and 29.40%, and both
are even lower than the aforementioned absolute-true success
rate achieved by iLoc-Animal.

Furthermore, it can also be seen from Table 2 that, com-
pared with the dataset used to test IMMMLGP and Hum-
mPLoc2.0, the benchmark dataset used to test iLoc-Animal is
much more harsh due to the following facts. (1) It covers 20
subcellular location sites, whereas the dataset used to test
IMMMLGP and Hum-mPLoc2.0 only covered 14 location sites.
As is well known, the more classes a benchmark dataset covers,
the more difficult it is to get a high success rate when using it to
test a classifier.11 (2) The multiplicity degree of the benchmark
dataset used to test iLoc-Animal was 1.8922 (see Table 2), which
is much higher than 1.1851, the multiplicity degree of the

benchmark dataset used to test IMMMLGP and Hum-mPLoc2.0.
It is easy to imagine that the higher the multiplicity degree of a
benchmark dataset is, the more number of multiple subcellular
locations it contains, and hence the more difficult it is to achieve
a high absolute-true success rate when using it to test a pre-
dictor, as will be further discussed later. However, the overall
absolute-true success rate achieved by iLoc-Animal is still
significantly higher than that achieved by IMMMLGP and
Hum-mPLoc2.0, indicating that iLoc-Animal holds a high
potential to become a useful high throughput tool in this area.

It is instructive to point out that since a sample may have
two or more labels in a multi-label system, it is meaningless to
define the absolute-true success rate for the samples in each of
the individual groups, such as the proteins in each of the
subcellular locations,4 the drugs in each of the ATC classes,5

and the antimicrobial peptides in each of the AMP types.7 This
is because the concept of the absolute-true rate is in conflict or
inconsistent with the success rate for each of the individual
groups in a multi-label system. For instance, suppose a protein,
say Pk, can simultaneously occur in the following three
subcellular locations: ‘‘cytoplasm’’, ‘‘nucleus’’, and ‘‘plasma
membrane’’. However, in its predicted result, only ‘‘cytoplasm’’
is shown but the other two locations are missing. Thus,
according to the absolute-true rate, the score for predicting Pk

is zero although its subcellular location is correctly predicted as
far as the ‘‘cytoplasm’’ sub-set is concerned. That is why in all
the papers focused on the multi-label systems (see, e.g., ref. 4,
36, and 38) no absolute-true success rate value was provided for
each of the individual labels.

Instead, we should consider the absolute true success rates
for the samples with different numbers of labels. For example,
reported in Table 3 are the absolute-true success rates achieved
by using the iLoc-Animal predictor4 for identifying the animal
proteins with different numbers of subcellular location sites.
For facilitating in-depth analysis, listed in this table are also the
corresponding rates by the completely random guess and
weighted random guess, as defined below.

The completely random guess (CRG) rates can be derived as
follows. First of all, the query protein may have one label, two
labels, or up to M labels; i.e., one of the M possibilities
regarding the number of labels it may bear. In other words,

Table 2 A comparison of the iLoc-Animal predictor with the other existing
predictors that are also able to deal with a system with both single- and multiple-
location proteins. Reproduced from ref. 4 with permission

Predictor
Absolute-
true ratea

Coverage or
recall ratea

Multiplicity
degreeb

Number of
locations
covered

IMMMLGPc 0.2740 0.5950 1.1851 14
Hum-mPLoc2.0d 0.2940 0.5190 1.1851 14
iLoc-Animal 0.4562 0.6949 1.8922 20

a See eqn (16) for the definitions of ‘‘absolute-true’’ and ‘‘coverage’’ or
‘‘recall’’. b See eqn (4) for the definition of ‘‘multiplicity degree’’ for a
benchmark dataset. c The predictor proposed by He et al.38 d The
predictor proposed by Shen and Chou.36

Table 3 The absolute true success rates obtained by iLoc-Animal for proteins with different numbers of subcellular location sites. Adapted from ref. 4 with permission

Number of location sites or labels Number of proteins

Absolute-true rate

iLoc-Animal Completely random guessa (%) Weighted random guessb (%)

1 2284 1240

2284
¼ 54%

2.5 � 10�1 2.2

2 1740 928

1740
¼ 53%

2.6 � 10�2 1.8 � 10�1

3 510 77

510
¼ 15%

4.4 � 10�3 8.9 � 10�3

4 368 53

368
¼ 14%

1.1 � 10�3 1.5 � 10�4

5 111 5

111
¼ 4:5%

3.2 � 10�4 1.4 � 10�4

a The completely random guess was calculated according to eqn (21). b The weighted random guess was calculated according to eqn (22).
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for a completely random guess, the probability for a query
protein to have m(= 1, 2, � � �, or M) symbol(s) is 1/M. Secondly, of
the M labels, we have

CðM;mÞ ¼ M!

ðM �mÞ!m!
(20)

distinct ways to pick the m labels. In the above equation, the
symbol C(M,m) represents the number of combinations of M
distinct things (or locations) taken m at a time. Accordingly, the
completely random guess (CRG) rate for a sample to have
m(rM) labels should be calculated by

PðCRGÞ ¼ 1

M
� 1

CðM;mÞ ðm �MÞ (21)

where M is the total number of all the possible subcellular
locations that is equal to 20 for the multi-label system investi-
gated in ref. 4.

The weighted random guess (WRG) rates can be derived via
the following consideration. For a weighted random guess, the
probability for a query protein to have m(rM) symbol(s) is
n(m)/N, where n(m) has the same meaning as in eqn (3), i.e.,
the number of samples with m different labels, and N is the
number of the total samples concerned. Therefore, the
weighted random guess (WRG) rates for a sample to have
m(=1, 2, � � �, or M) label(s) should be calculated by

PðWRGÞ ¼ nðmÞ
N
� 1

CðM;mÞ ðm �MÞ (22)

From Table 3, we can see that for those proteins with more
number of labels (different location sites), the overall absolute
true success rates achieved by the iLoc-Animal4 are generally
lower. This is fully consistent with results derived from the
random guess approaches. As shown in Table 3, the absolute-
true success rates by the completely random guess and
weighted random guess for the proteins with one label (loca-
tion site) are 0.25% and 2.2%, those for the proteins with two
labels are 0.026% and 0.18%, those for the proteins with three
labels are 0.0044% and 0.0089%, those for the proteins with
four labels are 0.0011% and 0.00015%, and those for the
proteins with five labels are 0.00032% and 0.00014%, respec-
tively. It can be also seen from the table that the absolute-true
rates achieved by iLoc-Animal are about 200–14 000 times higher
than those achieved by the completely random guess, and
about 25–93 000 times higher than those achieved by the
weighted random guess.

The reason why in Table 3 only the absolute-true rates
are shown is because the comparison of the results by the
iLoc-Animal predictor with the results by the random guess is
much easier and intuitive if using the absolute-true metrics. Of
course, the corresponding values for the other four metrics can
also be calculated as given in Table 4.

VI. Some remarks on the GO approach

In studying multi-label molecular biosystems, particularly in
identifying the subcellular localization of multiplex proteins,
the gene ontology (GO) approach has been increasingly used to
develop various powerful predictors (see, e.g., ref. 3, 8, 9, 16, 18,
36, and 38–49).

GO is a controlled vocabulary used to describe the biology of
a gene product in any organism.50,51 GO database52 was estab-
lished according to the molecular function, biological process,
and cellular component. Thus, the following questions might
be asked regarding the GO approach. If a protein already has
GO annotation, why does one need to predict its subcellular
location? Is it merely a procedure of converting the annotation
from one format into another?

To address these questions, let us consider the following
facts. In the literature almost all the existing benchmark
datasets constructed by many investigators for predicting pro-
tein subcellular localization were taken from the Swiss-Prot
database, in which all the proteins were explicitly annotated
with their subcellular location information determined from
experiments. Can we hence say that the outputs from these
predictors are not prediction? Of course, we cannot. This is
because all these predictors such as those proposed in ref. 53–
61, once established, would yield the desired subcellular loca-
tions of query proteins by using the input only containing the
sequence information alone without needing any Swiss-Prot
annotation information at all. This is exactly the same for those
predictors developed by using the GO approach, such as Euk-
mPloc2.0,9 iLoc-Euk,8 iLoc-Hum,3 as well as the predictors
proposed in ref. 38, 48, and 49. For these GO-approach pre-
dictors, once established, the only input for them to perform
prediction is the sequences of query proteins without needing
any of the GO annotation information whatsoever. Accordingly,
as far as the requirement for the input is concerned, there is no
difference at all between the non-GO-approach predictors and
GO-approach predictors.

Furthermore, it is instructive to note that, of the 5048
protein samples in the benchmark dataset S used to train
and test iLoc-Animal, a subcellular location predictor for animal
proteins developed recently based on the GO approach,4 3977
had no GO annotation terms at all, and their feature vectors in
the GO-space were derived through their homologous proteins
via the following steps. (1) Without losing generality, let us use
P to represent one of the 3977 proteins without any GO terms.
(2) Use the BLAST62 program to search all the proteins in the
Swiss-Prot database for those having homologous sequences
to P. (3) The homologous proteins thus found were collected
into a set, Shomo

P , called the ‘‘homology set’’ of P. All the

Table 4 The rates for the other four metrics obtained by iLoc-Animal for
proteins with different numbers of subcellular location sites

Number of location
sites or labels

Number of
proteins Aiming Coverage Accuracy

Absolute-
false

1 2284 0.6484 0.7631 0.6484 0.0366
2 1740 0.7857 0.7078 0.6781 0.0427
3 510 0.7898 0.5405 0.5113 0.0841
4 368 0.8899 0.5238 0.5127 0.1029
5 111 0.9580 0.4450 0.4375 0.1446
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elements in Shomo
P can be deemed as the ‘‘representative

proteins’’ of P, sharing some similar attributes such as struc-
tural conformations and biological functions.63–65 (4) Use the
GO terms of these representative proteins to define the feature
vector P via the following equations

cu ¼
PNhomo

P

k¼1 dðu; kÞ
Nhomo

P

ðu ¼ 1; 2; � � � ;OÞ (23)

where Nhomo
P is the number of representative proteins in Shomo

P ,
O = 3043 is the number of total GO terms used in ref. 4, and

dðu; kÞ ¼
1; if the kth representative protein hits

the uthGO term considered

0; otherwise

8><
>: (24)

Substituting eqn (23) and (24) into eqn (5), we immediately
obtain the feature vector in the GO space for P although it did
not have any GO term. Among the 3977 proteins, 1744 were
perfectly correctly predicted for their subcellular locations
without any over- or under-prediction. In other words, the
absolute true success rate achieved by iLoc-Animal for the
3977 proteins without any GO annotation terms was 43.85%.
Obviously, this is certainly not what could be done by simply
converting the format of protein subcellular location annota-
tions from one format to the other, as thought by those who
hold a skeptical point of view about the GO approach.

Actually, the essence of why using the GO approach can
significantly improve the prediction quality is due to the fact
that proteins mapped into the GO-space (instead of the Eucli-
dean space or any other simple geometric space) would be
clustered in a way much better reflecting their subcellular
locations, as elaborated in ref. 2 and 66.

VII. Conclusion and perspectives

Compared with the single-label systems, it is much more
difficult to develop prediction methods for the multi-label
systems, for which it is also much more complicated to properly
define the prediction quality. A set of five metrics was intro-
duced to reflect the prediction quality from five different
angles. Of the five metrics, the ‘‘Absolute-True’’ rate is the most
intuitive one. It is also the most strict and harsh one. How to
enhance its success rate is a big challenge for the future work in
this area.

During the last two years or so, some concepts and mathe-
matical formulations developed for the multi-label systems
have been utilized to investigate the subcellular localization
of proteins in various organisms, classification of anatomical
therapeutic chemicals (ATC) for drugs, and identification of the
functional type for antimicrobial peptides (AMPs). Although it
is still very difficult to gather very accurate information for
multi-label biosystems and the current collection of the bench-
mark dataset might not be complete and accurate, it is antici-
pated that, with the rapid accumulation of experimental data in
the post-genomic age, the existing benchmark datasets will
become more complete and accurate, and the method

formulated in this review can be straightforwardly used on
the improved benchmark datasets to enhance the quality of
prediction. Meanwhile, we may also face more and more multi-
label molecular biosystems. The concept and approach sum-
marized here will become a useful vehicle to study these new
multi-label biosystems.

Since the powerful GO approach has been increasingly used
to develop various methods for predicting subcellular localiza-
tion of proteins with both single and multiple sites (a typical
multi-label system), an analysis for justifying the GO approach
and the essence of why it is so powerful have been briefly
elaborated.
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