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Abstract

Ionising radiation is a pleiotropic stress agent that may induce a variety of adverse effects.

Molecular biomarker approaches possess promise to assess radiation exposure, however, the

pleiotropic nature of ionising radiation induced transcriptional responses and the historically poor

inter-laboratory performance of omics-derived biomarkers serve as barriers to identification of

unequivocal biomarker sets. Here, we present a whole-genome survey of the murine

transcriptomic response to physiologically relevant radiation doses, 2 Gy and 8 Gy. We used this

dataset with the Random Forest algorithm to correctly classify independently generated data and

to identify putative metabolite biomarkers for radiation exposure.
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1 Introduction

Ionising radiation is a multi-faceted stress agent that can induce a variety of adverse effects

in organisms over a wide dose range (Hyduke et al., 2009). An important target for radiation

is cellular DNA. Damage to DNA can lead to genomic instability and carcinogenesis or, in

the case of high dose exposure, organ failure (Loft and Poulsen, 1996; Hall and Angele,

1999; Mothersill et al., 2005). Mitotically active cells are particularly sensitive to radiation

exposure (Hall and Giaccia, 2006). Both genotoxic stress as well as damage to other cellular

targets, such as membranes, can trigger a variety of signalling pathways (Hyduke et al.,

2009). Also, in a phenomenon termed the ‘bystander effect’, radiation-exposed cells are

known to release factors that induce a stress-response in unexposed cells (Lorimore and

Wright, 2003; Ghandhi et al., 2008; Hei et al., 2008). In addition to direct damage,

circulating White Blood Cells (WBCs) will be exposed to stress signals expressed by

damaged cells (Paul and Amundson, 2008), thus allowing the WBCs to serve as systemic

monitors of stress.

As ionising radiation is pleiotropic, it is difficult to identify unequivocal biomarkers for

radiation exposure (Amundson et al., 2003, 2005, 2008). Radiation exposure may induce a

variety of responses, including, inflammation (Lorimore and Wright, 2003), oxidative stress

(Riley, 1994), the unfolded protein response (Cook et al., 2006), apoptosis and genomic

instability (Laiakis and Morgan, 2005). Identifying molecular biomarkers to assess the

presence of a pathology is a topic that has received much attention, notably in cancer

research as well as in radiation biodosimetry (Ramaswamy et al., 2001; Tibshirani et al.,

2002; Ressom et al., 2008).

Whole-genome transcriptome measurements provide a systems-level view of a stress

response, however, whole-genome analyses are not practical for rapid diagnostic purposes.

For example, to rapidly screen a population after a radiological event, field devices will

likely be limited to a few 10 s or 100 s of genes. To identify candidate molecular markers for

radiation exposure, researchers have explored the transcriptional response to radiation using

WBC (Amundson et al., 2004; Dressman et al., 2007; Paul and Amundson, 2008).

Specifically, a 74-gene set was developed that could distinguish unirradiated human WBC

from ex vivo-irradiated WBC and discriminate according to dose at biologically relevant

doses, 0.5 Gy to 8 Gy (Paul and Amundson, 2008). These studies have illustrated the

potential of the WBC transcriptome as a source of radiation biomarkers, however, the initial

studies focused on ex vivo radiation exposure or on a subset of the transcriptome and may

have overlooked key biomarkers. Development of effective in vivo biodosimetry requires

animal models due to limited dose range data available for human exposure.

A common criticism of biomarker studies is the substantial impact of inter-laboratory

variation on transcriptome-derived signatures; oftentimes, a classifier works well within a
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study but exhibits decayed performance when applied to independently generated data (Shi

et al., 2006). The inter-laboratory variation in gene expression signatures often arises from

differences in sample preparation and transcriptomics technology (Shi et al., 2006). To

overcome the difficulties associated with confounding factors, a variety of machine-learning

algorithms have been employed to identify robust gene expression signatures for a variety of

pathologies. These methods include support vector machines (Song and Rajasekaran, 2010),

decision trees (Evans et al., 2010), boosting (Dettling and Buhlmann, 2003), bagging

(Dinnis et al., 2006) and Random Forests (Brieman, 2001).

The Random Forests algorithm (Brieman, 2001) is gaining popularity (Strobl et al., 2008;

Lanz et al., 2009; Heitner et al., 2010) in the field of biomarker identification for a number

of reasons:

• it is not biased toward strongly expressed genes

• it is easily applied to multi-category data

• it is applicable for quantitative predictions

• it provides internal estimates of error and variable importance

• it is freely available.

Here, we present a whole-genome dataset of the murine blood transcriptional responses to in

vivo ionising irradiation and use the Random Forests algorithm to create a radiation

exposure classifier. When we use the Random Forests algorithm to assess the radiation

exposure of independently generated data, all samples were correctly classified by dose. In

addition, we show how transcriptome data can be used with a network model of metabolism

to predict putative biomarker metabolites indicative of radiation exposure that may provide

insight into underlying mechanisms.

2 Methods

2.1 Murine γ-ray blood transcriptome

Male C57BL/6N mice, 8–12 wks old, were obtained from Charles River Laboratories, Inc.

(Wilmington, MA). Mice were housed at Georgetown University under standard 12 h light

and 12 h dark cycle conditions and given water and regular rodent chow ad libitum. All

experimental procedures and animal handling were in accordance with animal protocols

approved by the Georgetown University Animal Care and Use Committee. γ-irradiation of

mice (2 Gy and 8 Gy) and sham-treatment of controls (0 Gy) were conducted with a

Cesium-137 source in a pie cage and in accordance with Georgetown University policy.

Mice were euthanised 6 h post-exposure and blood samples were collected by cardiac

puncture. RNA was purified using PreAnalytiX’s PAXgene blood RNA system (Qiagen,

Valencia, CA) or Ambion’s Mouse RiboPure-Blood RNA isolation kit (Applied Biosystems,

Carslbad, CA). Total RNA quality was assessed with Agilent’s (Carlsbad, CA) RNA 6000

Nano Kit and Bioanalyser 2100. Globin RNA was removed with Ambion’s Globinclear

Mouse/Rat kit (Applied Biosystems). Cy3-labelled cRNA was generated from 400 ng total

RNA using Agilent’s QuickAMP kit. Cy3-labelled cRNA (1.65 μg) was hybridised to
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Agilent’s Mouse Whole Genome arrays (G4122F) with Agilent’s GEx Hybridisation HI-

RPM Buffer. The samples were hybridised for 16 h in a rotisserie hybridisation oven

(G2545A, Agilent), then the arrays were washed with Agilent’s gene expression wash

buffers and scanned with an Agilent DNA Microarray Scanner 2505A in an ozone hood.

Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) was performed

with an iCycler and iScript onestep RT-PCR kit (Bio-Rad, Hercules, CA); measurements

were normalised to GADPH expression. RT-PCR primer sets (Supporting Information Table

1) were selected from PrimerBank (ISG20L1) or RTPrimerDB (BAX, CDKN1A, GADPH)

and purchased from Operon Biotechnologies, Inc. (Huntsville, AL).

2.2 Data analysis

Microarray Processing. Image analysis and intra-chip normalisation were performed with

Feature Extraction 9.5.3.1 (Agilent). Unless otherwise noted, subsequent analyses were

performed with the R statistical analysis framework (Team, 2010) and associated packages

(Reimers and Carey, 2006). Probes that had intensity readings of at least 50 counts (as

assessed by Feature Extraction) in over 20% of the test samples (for at least one dose) and

20% of the control samples were retained for analysis. To account for inter-chip variation,

quantile normalisation was performed on the retained probes using the R bioconductor

limma package (Reimers and Carey, 2006). Data were filtered based on a significant (p <

0.05 t-test with Benjamini–Hochberg correction) (Benjamini and Hochberg, 1995) 2-fold

change versus control samples. Then, a classifier was constructed using the Random Forests

algorithm (Brieman, 2001) as implemented in the R package random Forest (Liaw and

Wiener, 2002) for the three exposure doses (0, 2 and 8 Gy).

To identify a subset of features that facilitate dose-dependent classification while

maintaining accuracy, we selected the 50 most important genes. The Random Forest

package provides an approach to calculate the relative importance of features in a classifier:

To calculate the importance of a gene, the gene’s expression value was replaced with a value

randomly chosen from the dataset and the cross-validation performance was assessed; if a

significant decay in performance occurred, then the gene was important for solving the

classification problem.

Test set comparison—To determine if we could develop a classifier that was robust to

inter-laboratory variation, we constructed a Random Forests classifier from our data and

used it to classify 21 samples from Dressman et al. (2007), hereafter referred to as the test

set. We downloaded the Dressman et al. data from GEO (GEO Accession ID: GSE6873)

and then removed genes from our data that were not present in the test set leaving 11,822

unique genes. We did not use statistics from the test set to filter any of the genes. After

selecting for genes with strong (>50 counts in 20% of the samples) signals and significant (p

< 0.05 t-test with Benjamini–Hochberg correction) 2-fold perturbations, we used the

Random Forests algorithm to construct a classifier comprised of 50 genes, which was then

used to classify the test set data.

Reporter metabolite analysis—To create a draft murine metabolic network model, we

downloaded the current version of the human metabolic network reconstruction (Duarte et
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al., 2007) from the BiGG database (Schellenberger et al., 2010). We then used Homologene

(Wheeler et al., 2003) build 64 to map the enzymatic reactions from the human network to

mouse genes; this draft murine metabolic network model was then used to identify reporter

metabolites. The murine metabolic network model contains 3742 biochemical reactions of

which 2273 are catalysed by 1401 gene products; 1355 genes were present on the arrays and

used for the reporter metabolite calculations.

Reporter metabolite calculations were performed with the COBRA for Python package

(http://opencobra.sourceforge.net) using SciPy’s (http://www.scipy.org) statistical modules,

according to Patil and Nielsen (2005). In short, the metabolic network was represented as a

bipartate graph where the nodes were the metabolites, genes and edges. From the

transcriptome data, for each gene a p-value was calculated with Student’s t-test and

converted into a Z-score using the inverse normal cumulative distribution. Then, based on

metabolic network topology, a size-independent aggregate Z-score (Whitlock, 2005) was

calculated for each metabolite from the Z-scores of the surrounding genes. The metabolite

Z-scores were then background corrected and metabolites were ranked by Z-score – the

larger the Z-score the more activity associated with the metabolite.

3 Results

3.1 Reference mouse blood radiation-response transcriptome dataset

Here, we present a whole-genome dataset of the murine blood transcriptomic response to γ-

rays. The final dataset is comprised of 18 samples collected 6 h after whole-body radiation

exposure (NCBI GEO Accession GSE33172). For biodosimetry after a radiologic event

(DiCarlo et al., 2010), the dose range of interest is 1 Gy to 8 Gy. In our study, we used 2 Gy,

a dose not associated with acute mortality, and 8 Gy, which will cause mortality in 50% or

more of mice within several weeks (Green, 1966). These doses and times, also, enabled the

comparison of our results with other data from mouse and human studies (Dressman et al.,

2007; Paul and Amundson, 2008).

In this study, we use the dataset to assess the ability of the Random Forests algorithm to

construct a radiation exposure signature that is robust to interlaboratory variation and we

identify putative reporter metabolites (Patil and Nielsen, 2005) that are associated with

significant transcriptional perturbations. Reporter metabolites are metabolites that are

associated with a large number of transcriptional perturbations and could thus serve as

biomarkers. This dataset could be used as a baseline to delineate radiation-response

mechanisms using transcriptome measurements from genetically engineered mouse models.

When we explored the transcriptional perturbations of the murine homologs for a set of

genes from an ex vivo human radiation response classifier, we found that the majority of the

significantly perturbed (p < 0.05 t-test with Benjamini–Hochberg correction) (Benjamini and

Hochberg, 1995) mouse genes were in the same direction as the human homologs and some

exhibited a graded response (Figure 1(A)). Differences in radiation sensitivity between the

human classifier and our murine dataset may be due to different radiation responses inherent

in mice and humans or due to experimental configuration. The classifier from Paul and

Amundson was derived from ex vivo irradiated blood, thus the WBCs were not exposed to
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internal stress signals that would be detected by circulating WBCs. Additionally, the

classifier for the Paul and Amundson set consisted of control/treatment sets comprised of

blood from an individual donor, whereas each sample in our study came from an individual

mouse and, when assessing fold-change, was compared with the median of the control

group.

Quantitative RT-PCR was performed to verify that radiation increased the expression of

Bax, Cdkn1a and Isg20l1 (Figure 1(B)). These genes and others in the set of significantly

perturbed genes (p < 0.05 Benjamini–Hochberg correction) are associated with the tumour

suppressor p53 (Chipuk et al., 2004; Lohr et al., 2003; Eby et al., 2010). When we compared

our set of significantly perturbed genes to a set of murine genes previously shown to be

upregulated by p53 in response to ionising radiation in spleen and thymus (Burns and El-

Deiry, 2003), there was sizable qualitative concordance (Supporting Information Figure 1).

The qualitative similarities across tissues highlight the potential for using our data with

genetically modified mouse strains to explore the aetiology of the radiation response.

3.2 Construction and assessment of a robust radiation response classifier

We were interested in determining if we could identify a set of 50 genes that could be used

to accurately classify samples by radiation exposure. We used the Random Forests algorithm

to construct a classifier from the 1318 genes that were significantly (p < 0.05 Benjamini–

Hochberg correction) perturbed 2-fold or more (vs. the median of the control set) in at least

20% of our samples. The genes were selected using the Random Forests importance metric,

which calculates the change in performance when the specific gene is not used on the

classifier. The Random Forests classifier created with the 50 most important genes was

100% accurate in self-classification (Figure 2(A)); the power of a Random Forests classifier

is evident in the strong separation of the control and two treatment doses. Regardless, of

whether we built the classifier using all perturbed or only the up-regulated genes (2-fold

perturbation; p < 0.05), the classifier was 100% accurate at self-validation. The Random

Forest algorithm estimates errors internally based on the average of the accuracies of each

tree in the forest (Brieman, 2001). Each tree is calculated with a different bootstrap sample

that does not include all of the original data then accuracy is assessed by comparing the

predictions for the unused data with their actual classes.

It is important to note that we constructed the classifier with normalised gene expression

values, not gene expression ratios. Using expression levels simplifies the selection of

candidate biomarker genes based on absolute expression. When selecting biomarker genes

for a field deployable device, it may be prudent to focus on genes that are positively and

strongly perturbed by radiation.

The 50 most important (Supporting Information Table 2), as determined by the Random

Forests approach, overall and up-regulated genes exhibited a dose-dependent response

(Figure 2(B)–(C)), indicating that their relative expression levels may serve to identify

exposure dose. In the up-regulated gene list, there are known stress responsive genes that

function in apoptosis, cell survival signalling and oxidative stress, such as Fas, Plk2,

Trp53inp1, GTSE and Gadd45b (Mizuno et al., 2003; Liu and Erikson, 2003; Tomasini et

al., 2005; Brown et al., 2007; Yoo et al., 2003). Interestingly, there is a number (>20) of
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strongly down-regulated (<30-fold vs. median of control groups) genes in the classifier

(Figure 2(B)). These down-regulated genes had no obvious involvement in known radiation

response mechanisms, which could mean that they are components of uncharacterised

stress-responses or tertiary perturbations that provide good discriminating power but do not

link directly back to the core stress-response pathways.

One issue that plagues the field of molecular biomarker research is over-fitting to the

training dataset (Kim et al., 2002; Shi et al., 2006). Over-fitting means that the classifier

would be highly successful in classifying the original dataset, or in a leave one out cross-

validation study, but exhibit decreased performance with an independently generated

dataset. Over-fitting may arise from outlier elimination or a sample preparation artifact. To

minimise the introduction of an artifact during sample preparation, each γ-ray exposure dose

group consisted of mice that were treated on separate dates and each Agilent 4 × 44 slide

was hybridised with samples from at least two distinct dose groups.

Over-fitting of the classifier to laboratory conditions would severely reduce the value of the

classifier in less controlled conditions. For example, in the case of a radiological event, the

samples collected during triage are not likely to be acquired in the exact same fashion as

each other, and the preparation method is likely to be substantially different than that

employed in the controlled laboratory environment used to develop the assay. Because of

the non-uniformity in sample collection and preparation, it is essential for a radiation

response classifier to maintain a high accuracy in spite of sizable differences in sample

collection and processing protocols. Successful classification of an independently generated

dataset by our approach would serve to illustrate the robustness of the Random Forests

method.

To ascertain whether our classifier was over-fit to our dataset and to assess the robustness of

our feature selection procedure, we sought an independently generated transcriptome dataset

to test our classifier. Dressman et al. (2007) have recently published a survey of the mouse

blood transcriptome response to γ-rays. Dressmen et al. exposed mice to various levels of γ-

rays and performed transcriptome analysis on mononuclear cells (MNC) purified from

whole blood using a dual-channel labelling strategy: Cy3 for universal mouse reference

RNA from Stratagene (Agilent, Carlsbad, CA), and Cy5 for sample RNA.

Crucial differences between our study and Dressman et al. include the following:

• different microarray technologies (Agilent inkjet oligomers vs. spotted Operon

oligomer arrays in Dressman et al.)

• some different radiation doses were employed

• blood collection protocol (cardiac puncture and whole blood vs. ocular bleed and

MNCs isolated via Ficoll Hypaque centrifugation by Dressman et al.)

• different protocols for purifying, labelling (1-channel vs. 2-channel in Dressman et

al.) and hybridising the mRNA were followed.

The presence of these potential confounding factors made the Dressman et al. dataset an

ideal candidate for assessing the robustness of our method to inter-laboratory variation.
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Hereafter, our dataset is referred to as the training set and the dataset from Dressman et al. is

referred to as the test set.

From the test set, we extracted the raw intensity values for the doses (0, 2 and 10 Gy) that

were most similar to our training set doses (0, 2 and 8 Gy). After removing features from our

training set that were not present in the raw test set data, there were 11,822 unique genes.

The test set contained 12,651 unique transcripts meaning that our training set covered over

93% of the test set genes. It is crucial to note that we did not consider the significance levels

or fold changes of genes in the test set for this comparison. If we had focused on only the

genes that were significantly perturbed in both the training set and the test set, then we

would bias our classifier toward genes significantly perturbed in the test set. Next, we

performed quantile normalisation (Ballman et al., 2004) across the combined training and

test sets. The test set was not used during classifier construction; it was only used to assess

the classifier’s predictive accuracy.

Next, we selected genes that were significantly (p < 0.05 t-test with Benjamini–Hochberg

correction) perturbed at least 2-fold vs. the control in our training set; there were 1083 genes

in our training set meeting these criteria. We then devised a 50 gene classifier using the

Random Forests algorithm (Supporting Information Table 3).

The robustness of the classifier to inter-laboratory variation was then assessed by comparing

the predictions for the test set with their actual radiation exposure levels. Surprisingly, there

were misclassifications when comparing predicted exposure levels versus the actual

exposure levels (Table 1). Taken together with the different methodologies used to acquire

the data, this indicates that the Random Forests algorithm is capable of constructing robust

classifiers that function in the face of sizable sample preparation differences and are not

over-fit to the training data.

3.3 Analysis of radiation response in the context of a genome-scale murine metabolic
network

Even though a classifier may be excellent at identifying the presence of a disease, such as

cancer, or a perturbation, such as radiation exposure, the features in a classifier may provide

little or no biological insight into the mechanisms. In the case of Random Forests, and a

variety of other machine learning algorithms, the algorithm is blind to the biochemical

network in which the genes are involved and will only strive to select genes that provide the

greatest discriminating power across classes; these genes may be the result of tertiary

perturbations that are not easily related to the underlying mechanism of interest.

One approach for gaining insight into the mechanisms underlying a transcriptomic response

is to analyse the data in the context of a genome-scale metabolic network reconstruction

(Duarte et al., 2007; Lewis et al., 2009). Genome-scale network reconstructions may be

converted to mathematical models to visually or computationally analyse transcriptome data

(Lewis et al., 2009). The most common visualisation methods involve simply overlaying the

expression data on the pathways within the model and visually determining what sections of

the network are associated with negative or positive changes in gene expression. Visual

inspection of genome-scale network models is limited by the fact that the networks are
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typically too large to visually inspect in toto and a number of subtle effects will not be

obvious from the genome-scale. Computational methods have been devised that take

advantage of network structure to identify patterns in omics datasets (Patil and Nielsen,

2005; Cakir et al., 2006; Oliveira et al., 2008). These methods are often used to identify

elements or regions of the larger network that are associated with a larger than average

number of transcriptional perturbations, under the assumption that intense transcriptional

activity associated with genes for a portion of a metabolic network, or pathway, would

indicate that the pathway is being perturbed.

To determine if there were any metabolic processes that may be highly sensitive to radiation,

we applied the reporter metabolites (Patil and Nielsen, 2005) algorithm to a genome-scale

model of murine metabolism. The murine metabolic network model was derived from a

human network reconstruction (Duarte et al., 2007) using homologene (Wheeler et al., 2003)

to map the human enzymatic reactions to murine enzymes. Of the 1805 genes in the human

model, there were murine homologs for 1401 genes. The reporter metabolites algorithm uses

a biochemical network’s structure to determine which metabolites are associated with a

large number of statistically significant transcriptional perturbations. A metabolite that is a

substrate for many gene products whose genes are weakly yet significantly perturbed will

have a higher score than a metabolite that is associated with a single strongly perturbed

gene. The Z-score for each metabolite is calculated by aggregating the Z-scores for all gene

products that use the metabolite as a substrate. The larger the aggregated Z-score for a

metabolite, the more attractive it is as a putative metabolite biomarker.

A number of metabolites from the murine metabolic network with aggregate Z-scores > 2

(Figure 3) are known to be perturbed by radiation exposure in a number of mammals

(Koenig et al., 2005; Kandasamy and Hunt, 1990; Dale et al., 1949; Tyburski et al., 2008,

2009). Interestingly, bicarbonate (HCO3), which may possess potential as a radionuclide

eliminator (Koenig et al., 2005), had a large Z-score (4.2 for 2 Gy and 3.5 for 8 Gy).

Histamine was the highest scoring compound for 8 Gy (Z-score = 6.9), and along with

prostaglandin H2 (Z-score = 2.9), is known to be produced after exposure to ionising

radiation in rats (Kandasamy et al., 1988; Kandasamy and Hunt, 1990). Metabolites

(ornithine, urea, ammonia, GDP, xanthine) associated with deamination of amino acids and

nucleotides were also associated with significant transcriptional activity (Z-score > 2). γ-

rays are known to induce deamination of amino acids (Dale et al., 1949) and metabolites

associated with nucleotide deamination have recently been proposed as radiation exposure

biomarkers based on murine urine metabolomics measurements (Tyburski et al., 2009).

4 Discussion

Here, we present an in vivo whole-genome dataset of the murine blood-transcriptome

response to ionising radiation. Genes in the mouse dataset show a similar response to

homologous radiation-responsive genes from an ex vivo human study (Figure 1(A))

indicating that a mouse model may be useful in extrapolating to a human radiation response.

However, the different directions in some of the perturbations (vs. the human) indicate that

there may be differences arising from the experiment configuration (in vivo vs. ex vivo) or

species-specific biology. From this dataset, we devised a classifier that illustrated that it is
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possible to discriminate radiation exposure, in a dose-dependent fashion, 6 h post-radiation

exposure. The method that we used to develop the radiation response signature from our

dataset was able to successfully classify the radiation exposure levels of independently

generated mouse blood transcriptome data (Table 1), even though there were notable

collection and processing differences for the independent dataset compared with our study.

We then analysed the transcriptome data in the context of a genome-scale murine metabolic

network model and identified a set of putative reporter metabolites for radiation exposure

(Figure 3). A number of these metabolites (ammonia, GDP, xanthine) were detected in a

urine metabolomics study of the mouse radiation response (Tyburski et al., 2008, 2009).

Overall, our work provides a whole-genome reference dataset and presents a robust mRNA-

based radiation-exposure classifier from mouse whole blood and identifies candidate

metabolite biomarkers for radiation exposure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Assessment of the murine transcriptional response to γ-rays in the context of radiation

responsive genes identified in an ex vivo human study (Paul and Amundson, 2008). (A)

Heatmap of the murine homologs for the genes in the radiation response classifier

constructed by Paul and Amundson. The left-side bar indicates the direction of

transcriptional perturbation by ionising radiation in the human dataset (green: down-

regulated, red: up-regulated). The majority of the murine homologs are perturbed in the

same direction as the human genes by ionising radiation exposure. (B) qRT-PCR

measurements of select radiation-responsive genes (Bax, Cdkn1a, Isg20l1) normalised to

GADPH from three of the samples (0, 2 and 8Gy) (see online version for colours)
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Figure 2.
Analysis of the classifier. (A) Multi-dimensional-scaling plot of the control (0 Gy) and γ-

irradiated (2 and 8 Gy) samples using the 50 most important genes as determined by

Random Forests illustrates a strong separation of the control and two treatment groups. (B)

Heatmap of radiation-responsive transcriptional perturbations, relative to the median of the

control group, for the 50 most important genes as determined by Random Forests. (C)

Heatmap of radiation-responsive transcriptional perturbations, relative to the median of the

control group, for the 50 most important up-regulated genes as determined by Random

Forests (see online version for colours)
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Figure 3.
Heatmap of the aggregate Z-scores for putative reporter metabolites associated with

transcriptional perturbations in the murine metabolic network following γ-ray exposure (2

Gy and 8 Gy). P-values were calculated for each gene in the treatment groups vs. the control

group using Student’s t-test and the Benjamini–Hochberg correction for multiple hypotheses

testing. The p-values were converted to Z-scores using the inverse normal cumulative

distribution, and aggregate Z-scores for the metabolites were calculated from the Z-scores of

all genes whose gene products employed the metabolite as a substrate. Promiscuous

metabolites, such as the hydrogen ion, phosphate ion and water, were excluded from

analysis (see online version for colours)
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Table 1

Random Forests classifier prediction of test set γ-ray exposure. Training set doses were 0, 2, and 8 Gy,

whereas test set doses were 0, 2, and 10 Gy. A classification was considered a true positive if the predicted

dose was the closest match to the actual delivered dose. All independent test samples were correctly classified

by dose

Prediction (Gy)

γ-ray (Gy) 0 2 8

0 7 0 0

2 0 7 0

10 0 0 7
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