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With the features of extremely high selectivity and efficiency in catalyzing almost all the chemical reactions in cells, enzymes play
vitally important roles for the life of an organism and hence have become frequent targets for drug design. An essential step in
developing drugs by targeting enzymes is to identify drug-enzyme interactions in cells. It is both time-consuming and costly to
do this purely by means of experimental techniques alone. Although some computational methods were developed in this regard
based on the knowledge of the three-dimensional structure of enzyme, unfortunately their usage is quite limited because three-
dimensional structures of many enzymes are still unknown. Here, we reported a sequence-based predictor, called “iEzy-Drug,”
in which each drug compound was formulated by a molecular fingerprint with 258 feature components, each enzyme by the
Chou’s pseudo amino acid composition generated via incorporating sequential evolution information and physicochemical features
derived from its sequence, and the prediction engine was operated by the fuzzy K-nearest neighbor algorithm. The overall success
rate achieved by iEzy-Drug via rigorous cross-validations was about 91%. Moreover, to maximize the convenience for the majority
of experimental scientists, a user-friendly web server was established, by which users can easily obtain their desired results.

1. Introduction

Enzymes are biomacromolecules that catalyze almost all the
chemical reactions essential for the life of a cell [1]. Most
enzymes are proteins although some RNA molecules have
been identified to possess the function of enzyme as well. As
catalysts, enzymes possess two exceptional features: one is of
high efficiency and the other of high selectivity. For instance,
the second-order rate constant between some enzymes and
their substrates [2] was surprisingly high [3], which could
almost reach the upper limit of diffusion-controlled reaction
rate according to the calculation and analysis by Chou
and coworkers [4–6]. The high selectivity or specificity of
enzymes was likened to the “lock-and-key” model, implying
that an accurate fit is required between the active site of an
enzyme and its substrate for the catalytic reaction to occur.
Owing to the previous unique features, enzymes play a
crucial role in controlling and regulating the order of

chemical reactions in cells that is vitally important for
their survival. It is also because of this that enzymes are
excellent drug targets, and actually many drugs are enzyme
inhibitors. For example, some peptide inhibitors against
HIV/AIDS [7–10] and SARS (severe acute respiratory syn-
drome) [11–13] were based on the Chou’s distorted key
theory [14], as illustrated in Figure 1, where (a) shows a
good fit for a cleavable octapeptide with the active site
of HIV-protease and (b) shows that the peptide has
become an ideal inhibitor or “distorted key” after its scis-
sile bond is modified. For a brief introduction about the
Chou’s distorted key theory and its application for design-
ing peptide drugs, see aWikipedia article at http://en.wikiped
ia.org/wiki/Chou’s distorted key theory for peptide drugs.

To develop enzyme-targeting drugs, an essential step is
to identify drug-enzyme interaction in cellular networking
[15]. The completion of the human genome project and the
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(a) (b)

Figure 1: A schematic drawing to illustrate how to use Chou’s distorted key theory to develop peptide drugs against HIV/AIDS. (a) shows a
good fitting and binding of a peptide to the active site of HIV protease right before it is cleaved by the enzyme. (b) shows that the peptide has
become a noncleavable one after its scissile bond is modified although it can still tightly bind to the active site. Such a modified peptide, or
“distorted key”, will automatically become an inhibitor candidate against HIV protease.

emergence of molecular medicine have provided excellent
opportunity to discover unknown target enzymes for drugs.
Many efforts were made in this regard by computationally
analyzing drug-enzyme interactions. The most commonly
used approaches are docking simulations (see, e.g., [16–19])
and protein cleavage site analysis (see, e.g., [8, 12, 13]) based
on Chou’s distorted key theory [14]. However, the latter
approach is mainly used to find peptide drugs. Compared
with the smaller organic compounds, although peptide drugs
have the advantage of low toxicity to human body, they
have the shortcoming of poor metabolic stability and low
bioavailability due to their inability to readily crossing thru
membrane barriers such as the intestinal and blood-brain
barriers [20]. In contrast, the molecular docking is indeed a
useful vehicle for investigating the interaction of an enzyme
receptor with its organic inhibitor and revealing their binding
mechanism as demonstrated by a series of studies [11, 19–
23]. However, to conduct molecular docking, a necessary
prerequisite is the availability of the 3D (three dimensional)
structure of the targeted enzyme. Unfortunately, the 3D
structures of many enzymes are still unknown. Although X-
ray crystallography is a powerful tool in determining the 3D
structures of enzymes, it is time-consuming and expensive.
Particularly, not all enzymes can be successfully crystallized.
For example, membrane enzymes are very difficult to crys-
tallize and most of them will not dissolve in normal solvents.
Therefore, so far very few membrane enzyme 3D structures
have been determined. Although NMR is indeed a very
powerful tool in determining the 3D structures of membrane
proteins as indicated by a series of recent publications (see,
e.g., [24–30]), it is time-consuming and costly. To acquire the
structural information in a timelymanner, one has to resort to
various structural bioinformatics tools (see, e.g., [18, 31, 32]).
Unfortunately the number of templates for developing high
quality 3D structures by structural bioinformatics is very
limited.

Therefore, it would save us a lot of time and money
if we could identify the interactions between enzymes and
drugs before carrying out any intense study in this regard.
In view of this, the present study was initiated in an attempt
to develop a computational method based on the sequence-
derived features that can be used to predict the drug-enzyme
interactions in cellular networking.

As summarized in a comprehensive review [33] and
demonstrated by a series of recent publications [34–37], to
successfully develop the desiredmethod, we need to consider
the following procedures: (i) construct or select a valid
benchmark dataset to train and test the predictor; (ii) denote
the drug-enzyme samples with an effective formulation that
can truly reflect their intrinsic relation with the target to be
predicted; (iii) introduce or develop a powerful algorithm
(or engine) to operate the prediction; (iv) conduct a rigorous
cross-validation to objectively evaluate its anticipated accu-
racy; (v) establish a user-friendly web-server for the predictor
that is freely accessible to the public. Next, let us elaborate
how to deal with these procedures one by one.

2. Materials and Methods

2.1. Benchmark Dataset. The data used in this study were
collected from Kyoto Encyclopedia of Genes and Genomes
(KEGG) [38] at http://www.kegg.jp/kegg/, which is a data-
base resource for understanding high-level functions and
utilities of the biological system, such as the cell, the
organism, and the ecosystem, from molecular-level infor-
mation, especially large-scale molecular datasets generated
by genome sequencing and other high-throughput exper-
imental technologies. For the current study, the benchmark
dataset S can be formulated as

S = S
+

∪ S
−

, (1)

where S+ is the positive subset that consists of the interactive
enzyme-drug pairs only, while S− is the negative subset
that contains of the noninteractive enzyme-drug pairs only,
and the symbol ∪ represents the union in the set theory.
Here, the “interactive” pair means the pair whose two
counterparts are interacted with each other in the drug-
target networks as defined in the KEGG database [38],
while the “noninteractive” pair means that its two counter
parts are not interacted with each other in the drug-target
networks. The positive dataset S+ contains 2,719 enzyme-
drug pairs derived from Yamanishi et al. [39]. The negative
dataset S− contains 5,438 noninteractive enzyme-drug pairs,
which were derived according to the following procedures:
(i) separating each of the pairs in S+ into single drug and
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enzyme; (ii) recoupling each of the single drugs with each
of the single enzymes into pairs in a way that none of them
occurred inS+; (iii) randomly picking the pairs, thus, formed
until they reached the number two times as many as the
pairs in S+. The 2,719 interactive enzyme-drug pairs and
5,438 noninteractive enzyme-drug pairs are given in Online
Supporting Information S1 (see Supplementary Material
available online at http://dx.doi.org/10.1155/2013/701317) All
the detailed information for the compounds or drugs listed
there can be found in the KEGG database via their codes.

2.2. Sample Representation. Since each of the samples in the
current network system contains an enzyme (protein) and
a drug, a combination of the following two approaches was
adopted to represent the enzyme-drug pair samples.

2.2.1. Drug

(a) 2D Molecular Fingerprints. Although the number of
drugs is extremely large, most of them are small organic
molecules and are composed of some fixed small structures
[40]. The identification of small molecules or structures can
be used to detect the drug-target interactions [41]. Molec-
ular fingerprints are bit-string representations of molecular
structure and properties [42]. It should be pointed out
that there are many types of structural representations that
have been suggested for the description of drug molecules,
including physicochemical properties [43], chemical graphs
[44], topological indices [45], 3D pharmacophore patterns,
andmolecular fields. In the current study, let us use the simple
and generally adopted 2Dmolecular fingerprints to represent
drug molecules, as described below.

First, for each of the drugs concerned, we can obtain
a MOL file from the KEGG database [38] via its code
that contains the detailed information of chemical structure.
Second, we can convert the MOL file format into its 2D
molecular fingerprint file format by using a chemical toolbox
software called OpenBabel [46], which can be downloaded
from the website at http://openbabel.org/. The current ver-
sion of OpenBabel can generate four types of fingerprints:
FP2, FP3, FP4, and MACCS. In the current study, we used
the FP2 fingerprint format. It is a path-based fingerprint that
identifies small molecule fragments based on all linear and
ring substructures and maps them onto a bit-string using a
hash function (somewhat similar to the daylight fingerprints
[47, 48]). It is a length of 256-bit hexadecimal string obtained
from theOpenBabel, andwe can convert it to a 256-bit vector.
Then, a molecular fingerprint can be formulated as a 256-D
vector given by

MF = [𝐴1 ⋅ ⋅ ⋅ 𝐴𝑗 ⋅ ⋅ ⋅ 𝐴256]
T
, (2)

where 𝐴
𝑗
(𝑗 = 1, 2, . . . , 256) is an integer between 0 and 15,

and T is the matrix transpose operator.
In order to capture as much useful information from

a molecular fingerprint as possible, we can also convert
the above 256-bit hexadecimal string into a 1024-bit binary
vector, which is a digital sequence only including 0 and 1,

and consider two different digital signal characteristics for the
digital sequence as follows.

(b) Information Entropy. Shannon proposed that any infor-
mation is redundant, and redundant size is related with
the occurrence probability or uncertainty of each symbol
such as numbers, letters, or words among the information.
The information entropy for a system with a probability
distribution 𝑃(𝑥

𝑖
) for two classes information entropy [49] is

defined as

𝐻
𝑥
= −∑

𝑥

𝑃 (𝑥
𝑖
) log
2
𝑃 (𝑥
𝑖
) (𝑖 = 0, 1) , (3)

where 𝑃(𝑥
𝑖
) represents the occurrence probability of num-

ber 𝑖 in the aforementioned 1024-bit binary vector and
the information entropy 𝐻

𝑥
is a measure value of the

information amount. For example, for the digital sequence
100100011010010, the value of the information entropy 𝐻

𝑥
,

thus, obtained is

𝑃 (𝑥
0
) =

9

15

= 0.6,

𝑃 (𝑥
1
) =

6

15

= 0.4,

𝐻
𝑥
= − (0.6 × log

2
0.6 + 0.4 × log

2
0.4) = 0.971.

(4)

(c) Complexity Factor. The Lempel-Ziv (LZ) complexity [50]
reflects the order that is retained in the sequence, and hence
was adopted in this study. For each step only two operations
were allowed in the process to get the LZ complexity: either
copying the longest section from the part of a nonempty
sequence or generating an additional symbol mark that
ensures the uniqueness of per component 𝑆(𝑖

𝑘−1
→ 𝑖
𝑘
). Its

substring is expressed by

𝑆 (𝑖 → 𝑗) = 𝑚
𝑖
𝑚
𝑖+1
𝑚
𝑖+2
⋅ ⋅ ⋅ 𝑚
𝑗

(1 ≤ 𝑖 ≤ 𝑗 ≤ 𝐿) , (5)

where 𝑚
1
represents the 1st digital value, 𝑚

2
the 2nd value,

and so forth. A nonempty digital sequence is synthesized
according to the following formula:

Syn (𝑆) = 𝑆 (1 → 𝑖
1
) ∙ 𝑆 (𝑖

1
+ 1 → 𝑖

2
)

∙ ⋅ ⋅ ⋅ ∙ 𝑆 (𝑖
𝑚−1

+ 1 → 𝑖
𝐿
) .

(6)

Suppose that 𝑆 = 𝑚
1
𝑚
2
𝑚
3
𝑚
4
𝑚
5
⋅ ⋅ ⋅ 𝑚
𝐿
has been recon-

structed by the subsymbol 𝑚
𝑟
which is viewed as the newly

inserted symbol. The substring up to 𝑚
𝑟
will be denoted by

𝑆(1 → 𝑟)∙, where the bold dot ∙ indicates that 𝑚
𝑟
is a newly

inserted symbol for checkingwhether the rest of the substring
𝑆(𝑟+1 → 𝐿) can be reconstructed by a simple process. At first
suppose 𝑆(𝑞) = 𝑚

𝑟
+ 1, and see whether 𝑆(𝑞) is the substring

for the subsequence 𝑆(1 → 𝑟), which means deleting the
last symbol from the substring 𝑆(1 → 𝑟)𝑆(𝑞). If the answer
is “no”, we insert 𝑆(𝑞) into the sequence followed by a dot ∙.
Thus, it could not be obtained by the same operation. If the
answer is “yes”, no new symbol is needed, and we can go on to
proceed with 𝑆(𝑞) = 𝑚

𝑟+1
𝑚
𝑟+2

and repeat the same previous
procedure. The LZ complexity is the number of dots (plus

http://dx.doi.org/10.1155/2013/701317
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one if the string is not terminated by a dot). For example, for
the sequence 100100011010010, syn(𝑃) and the corresponding
complexity factor CF are described as

Syn (𝑆) = 1 ∙ 0 ∙ 01 ∙ 000 ∙ 11 ∙ 01001 ∙ 0

CF = 7.
(7)

Thus, by adding the information entropy 𝐻
𝑥
(4) and com-

plexity factor CF (7) into the molecular fingerprint MF (2),
we obtained a total of (256 + 1 + 1) = 258 feature elements to
represent a drug compound; that is, it can now be formulated
as a 258-D vector given by

𝐷 = [𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴

256
𝐻
𝑥

CF]T, (8)

where 𝐴
𝑖
has the same meaning as in (2), while 𝐻

𝑥
and CF

are the information entropy and complexity factor, respec-
tively, as described in the previous two sections.

2.2.2. Enzyme. The sequences of the enzymes involved in
this study are given in Online Supporting Information S2.
Now the problem is how to effectively represent these enzyme
sequences for the current study. Generally speaking, there
are two kinds of approaches to formulate enzyme sequences:
the sequential model and the nonsequential or discrete
model [51]. The most typical sequential representation for
an enzyme sample E with 𝐿 residues is its entire amino acid
sequence; that is,

E = 𝑅
1
𝑅
2
𝑅
3
𝑅
4
𝑅
5
𝑅
6
𝑅
7
⋅ ⋅ ⋅ 𝑅
𝐿
, (9)

where 𝑅
1
represents the 1st residue, 𝑅

2
the 2nd residue, and

so forth. An enzyme sample thus formulated can contain its
most complete information. This is an obvious advantage of
the sequential representation. To get the desired results, the
sequence-similarity-search-based tools, such as BLAST [52,
53], are usually utilized to conduct the prediction. However,
this kind of approach failed to work when the query enzyme
did not have significant homology to enzyme of known char-
acters. Thus, various nonsequential representation models
were proposed. The simplest nonsequential model for an
enzyme was based on its amino acid composition (AAC), as
defined by

E = [𝑓
1
𝑓
2
⋅ ⋅ ⋅ 𝑓
20
]

T
, (10)

where 𝑓
𝑢
(𝑢 = 1, 2, . . . , 20) are the normalized occurrence

frequencies of the 20 native amino acids [54–56] in the
enzyme E, and T has the same meaning as in (2) and (8).
The AAC-discrete model was widely used for identifying
various attributes of proteins (see, e.g., [57–61]). However,
as can be seen from (10), all the sequence order effects
were lost by using the AAC-discrete model. This is its main
shortcoming. To avoid completely losing the sequence-order
information, the pseudo amino acid composition [62, 63]
or Chou’s PseAAC [3] was proposed to replace the simple
AAC model. Since the concept of PseAAC was proposed
in 2001 [62], it has penetrated into almost all the fields of

protein attribute predictions and computational proteomics,
such as predicting supersecondary structure [64], predicting
metalloproteinase family [65], predicting membrane pro-
tein types [66, 67], predicting protein structural class [68],
discriminating outer membrane proteins [69], identifying
antibacterial peptides [70], identifying allergenic proteins
[71], identifying bacterial virulent proteins [72], predicting
protein subcellular location [73, 74], identifying GPCRs and
their types [75], identifying protein quaternary structural
attributes [76], predicting protein submitochondria locations
[77], identifying risk type of human papillomaviruses [78],
identifying cyclin proteins [79], predicting GABA(A) recep-
tor proteins [80], and predicting cysteine S-nitrosylation sites
in proteins [81], among many others (see a long list of papers
cited in the References section of [33]). Recently, the concept
of PseAAC was further extended to represent the feature
vectors of DNA and nucleotides [36, 82], as well as other
biological samples (see, e.g., [83, 84]). Because it has been
widely and increasingly used, recently two powerful soft-
wares called “PseAAC-Builder” [85] and “propy” [86] were
established for generating various special Chou’s pseudo-
amino acid compositions, in addition to the web-server
PseAAC [87] built in 2008. According to a recent review [33],
the general formof Chou’s PseAAC for an enzyme sample can
be formulated by

E = [𝜓
1
𝜓
2
⋅ ⋅ ⋅ 𝜓
𝑢
⋅ ⋅ ⋅ 𝜓
Ω
]

T
, (11)

where the subscript Ω is an integer, and its value as well
as the components 𝜓

𝑢
(𝑢 = 1, 2, . . . , Ω) will depend on

how to extract the desired information from the amino acid
sequence of E (cf. (10)). Next, let us describe how to extract
useful information from the benchmark datasetS andOnline
Supporting Information S2 to define the enzyme samples
concerned via (11).

To incorporate as much useful information as possible
from an enzyme sample, we are to approach this problem
from three different angles, followed by incorporating the
feature elements thus obtained into the general form of
PseAAC of (11).
(a) Amino Acid Composition. The components of amino acid
composition have beenwidely used to predict various protein
attributes [57–61]. In this study, they were also included as the
first 20 elements in the general Chou’s PseAAC (cf. (11)); that
is,

𝜓
𝑢
= 𝑓
𝑢

(𝑢 = 1, 2, . . . , 20) , (12)

where 𝑓
𝑢
has the same meaning as in (10).

(b) Dipeptide Composition. Dipeptide composition has been
used to predict the protein secondary structural contents
[88, 89] as well as various protein attributes (see, e.g., [90–
93]). The number of different dipeptides is 20 × 20 = 400.
Suppose that the normalized occurrence frequencies of the
400 dipeptides in an enzyme sample are given by

𝑓

(2)

𝑢
(𝑢 = 1, 2, . . . , 400) . (13)
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Incorporating the above 400 dipeptide components into (11),
we have

𝜓
𝑢+20

= 𝑓

(2)

𝑢
(𝑢 = 1, 2, . . . , 400) . (14)

(c) Sequential Evolution Information. Biology is a natural
science with a historic dimension. All biological species
have developed starting out from a very limited number of
ancestral species. Their evolution involves changes of single
residues, insertions and deletions of several residues [94],
gene doubling, and gene fusion. With these changes accu-
mulated for a long period of time, many similarities between
initial and resultant amino acid sequences are gradually
eliminated, but the corresponding proteins may still share
many common attributes [18], such as having basically the
same biological function and residing at a same subcellular
location. To extract the sequential evolution information and
use it to define the components of (11), the PSSM (Position
Specific Scoring Matrix) was used as described next.

According to Schäffer et al. [95], the sequence evolution
information of enzyme E with 𝐿 amino acid residues can be
expressed by an 𝐿 × 20matrix, as given by

P(0)PSSM =

[

[

[

[

[

[

[

𝐸

0

1→1
𝐸

0

1→2
⋅ ⋅ ⋅ 𝐸

0

1→20

𝐸

0

2→1
𝐸

0

2→2
⋅ ⋅ ⋅ 𝐸

0

2→20

...
...

...
...

𝐸

0

𝐿→1
𝐸

0

𝐿→2
⋅ ⋅ ⋅ 𝐸

0

𝐿→20

]

]

]

]

]

]

]

, (15)

where 𝐸0
𝑖→ 𝑗

represents the original score of the 𝑖th amino
acid residue (𝑖 = 1, 2, . . . , 𝐿) in the enzyme sequence changed
to amino acid type 𝑗 (𝑗 = 1, 2, . . . , 20) in the process of
evolution. Here, the numerical codes 1, 2, . . . , 20 are used to
represent the 20 native amino acid types denoted by A, C,
D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y. The
𝐿 × 20 scores in (15) were generated by using PSI-BLAST
[96] to search the UniProtKB/Swiss-Prot database (Release
2013-05) through three iterations with 0.001 as the 𝐸 value
cutoff for multiple sequence alignment against the sequence
of the enzyme E. In order to make every element in (15) be
scaled from their original score ranges into region of [0, 1],
we performed a conversion through the standard sigmoid
function to make it become

P(1)PSSM =

[

[

[

[

[

[

[

𝐸

1

1→1
𝐸

1

1→2
⋅ ⋅ ⋅ 𝐸

1

1→20

𝐸

1

2→1
𝐸

1

2→2
⋅ ⋅ ⋅ 𝐸

1

2→20

...
...

...
...

𝐸

1

𝐿→1
𝐸

1

𝐿→2
⋅ ⋅ ⋅ 𝐸

1

𝐿→20

]

]

]

]

]

]

]

, (16)

where

𝐸

1

𝑖→ 𝑗
=

1

1 + 𝑒

−𝐸
0

𝑖→ 𝑗

(1 ≤ 𝑖 ≤ 𝐿, 1 ≤ 𝑗 ≤ 20) . (17)

Now,we extract the useful information from (16) to define the
components of (11) via the following approach:

𝜓
𝑢+420

= ℓ
𝑢

(𝑢 = 1, 2, . . . , 20) , (18)

where

ℓ
𝑗
=

1

𝐿

×

𝐿

∑

𝑘=1

𝐸

1

𝑘→𝑗
(𝑗 = 1, 2, . . . , 20) . (19)

(d) Grey System Model Approach. The grey system theory
[97] is quite useful in dealing with complicated systems that
lack sufficient information, or need to process uncertain
information. According to the grey system theory, we can
extract the following information from the 𝑗th column of
(16); that is,

[

𝑎

𝑗

1

𝑎

𝑗

2

] = (BT
𝑗
B
𝑗
)

−1

BT
𝑗
U
𝑗

(𝑗 = 1, 2, . . . , 20) , (20)

where

B
𝑗
=

[

[

[

[

[

[

[

[

[

[

−𝐸

1

2→𝑗
−𝐸

1

1→𝑗
− 0.5𝐸

1

2→𝑗
1

−𝐸

1

3→𝑗
−

2

∑

𝑖=1

𝐸

1

𝑖→ 𝑗
− 0.5𝐸

1

3→𝑗
1

...
...

...

−𝐸

1

𝐿→𝑗
−

𝐿−1

∑

𝑖=1

𝐸

1

𝑖→ 𝑗
− 0.5𝐸

1

𝐿→𝑗
1

]

]

]

]

]

]

]

]

]

]

,

U
𝑗
=

[

[

[

[

[

[

𝐸

1

2→𝑗
− 𝐸

1

1→𝑗

𝐸

1

3→𝑗
− 𝐸

1

2→𝑗

...
𝐸

1

𝐿→𝑗
− 𝐸

1

𝐿−1→𝑗

]

]

]

]

]

]

.

(21)

Therefore, based on the grey system theory and (20), we can
extract another 20 × 2 = 40 quantities from (16) to define
the components of (11); that is,

𝜑
𝑗
= {

𝑤
1
𝑎

𝑗

1
when 𝑗 is an odd number

𝑤
2
𝑎

𝑗

2
when 𝑗 is an even number

1 ≤ 𝑗 ≤ 20,

(22)

where 𝑎𝑗
1
and 𝑎𝑗

2
are given by (20); 𝑤

1
and 𝑤

2
are weight

factors, which were all set to 1 in the current study.
Substituting the elements in (12), (14), (18), and (22), we

finally obtain a total of Ω = 20 + 400 + 20 + 40 = 480

components for the PseAAC of (11), where

𝜓
𝑢
=

{
{
{
{

{
{
{
{

{

𝑓
𝑢

when 1 ≤ 𝑢 ≤ 20
𝑓

(2)

𝑢
when 21 ≤ 𝑢 ≤ 420

ℓ
𝑢

when 421 ≤ 𝑢 ≤ 440
𝜑
𝑢

when 440 ≤ 𝑢 ≤ 480.

(23)

In other words, in this study (11) or Chou’s PseAAC is a 480-
D vector, whose 480 components are given by (23) derived
from the amino acid composition, dipeptide composition,
sequential evolution information, and grey system theory.
(e) Representing Enzyme-Drug Pairs. Now the pair between
an enzyme molecule E and a drug compound D can be
formulated by combing (8) and (11), as given by

G = D ⊕ E

= [𝐴
1
⋅ ⋅ ⋅ 𝐴

256
𝐻
𝑥

CF 𝜓
1
⋅ ⋅ ⋅ 𝜓
480
]

T
,

(24)
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where G represents the enzyme-drug pair, ⊕ the orthogonal
sum [51], and each of the (258 + 480) = 738 feature elements
is given in (8) and (23).

For the convenience of the later formulation, let us use
𝑥
𝑖
(𝑖 = 1, 2, . . . , 738) to represent the 738 components of (24);

that is,

G = [𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑖
⋅ ⋅ ⋅ 𝑥
738
]

T
. (25)

To optimize the prediction results, different weights were
usually tested for each of the elements in (25). However, since
it would consume a lot of computational time for a total of 738
weight factors, here let us adopt the normalization approach
to deal with this problem as done in [98, 99]; that is, convert
𝑥
𝑖
in (25) to 𝑦

𝑖
according to the following equation:

𝑦
𝑖
=

2tan−1 (𝑥
𝑖
)

𝜋

(𝑖 = 1, 2, . . . , 738) ,
(26)

where tan−1 means arctangent. By means of (26), every
component in (25) will be converted into the range of
[−1, 1]; that is, we have −1 ≤ 𝑦

𝑖
≤ 1. As demonstrated

in [98, 99], the normalization approach via (26) was quite
effective in enhancing the quality of prediction operated in
a high dimension space. Therefore, in this study, we would
not to take the procedure of optimizing the weight factors,
significantly reducing the computational times.

2.3. Fuzzy 𝐾-Nearest Neighbour Algorithm. The 𝐾-NN (𝐾-
Nearest Neighbor) classifier is quite popular in pattern
recognition community owing to its good performance and
simple-to-use feature. According to the 𝐾-NN rule [100],
named also as the “voting 𝐾-NN rule,” the query sample
should be assigned to the subset represented by a majority
of its 𝐾 nearest neighbors, as illustrated in Figure 5 of [33].

Fuzzy 𝐾-NN classification method [101] is a special
variation of the𝐾-NNclassification family. Instead of roughly
assigning the label based on a voting from the 𝐾 nearest
neighbors, it attempts to estimate the membership values
that indicate how much degree the query sample belongs
to the classes concerned, Obviously, it is impossible for any
characteristic description to contain complete information,
which would make the classification ambiguous. In view of
this, the fuzzy principle is very reasonable and particularly
useful in dealing with complicated biological systems, such as
identifying nuclear receptor subfamilies [102], characterizing
the structure of fast-folding proteins [103], classifying G
protein-coupled receptors [104], predicting protein quater-
nary structural attributes [105], predicting protein structural
classes [106, 107], and so forth.

Next, let us give a brief introduction how to use the
fuzzy𝐾-NN approach to identify the interactions between the
enzymes and the drug compounds in the network concerned.

Supposing that S(𝑁) = {G
1
,G
2
, . . . ,G

𝑁
} is a set of vec-

tors representing 𝑁 enzyme-drug pairs in a training set

classified into two classes {𝐶+, 𝐶−}, where 𝐶+ denotes the
interactive pair class, while 𝐶− the noninteractive pair class;
S∗(G) = {G∗

1
,G∗
2
, . . . ,G∗

𝐾
} ⊂ S(𝑁) is the subset of the 𝐾

nearest neighbor pairs to the query pair G. Thus, the fuzzy
membership value for the query pair G in the two classes of
S(𝑁) is given by

𝜇

+

(G) =
∑

𝐾

𝑗=1
𝜇

+
(G∗
𝑗
) 𝑑(G,G∗

𝑗
)

−2/(𝜑−1)

∑

𝐾

𝑗=1
𝑑(G,G∗

𝑗
)

−2/(𝜑−1)
,

𝜇

−

(G) =
∑

𝐾

𝑗=1
𝜇

−
(G∗
𝑗
) 𝑑(G,G∗

𝑗
)

−2/(𝜑−1)

∑

𝐾

𝑗=1
𝑑(G,G∗

𝑗
)

−2/(𝜑−1)
,

(27)

where 𝐾 is the number of the nearest neighbors counted for
the query pairG; 𝜇+(G∗

𝑗
) and 𝜇−(G∗

𝑗
), the fuzzy membership

values of the training sample G∗
𝑗
to the class 𝐶+ and 𝐶−,

respectively, as will be further defined next; 𝑑(G,G∗
𝑗
), the

cosine distance between G and its 𝑗th nearest pair G∗
𝑗
in

the training dataset S(𝑁); 𝜑(> 1), the fuzzy coefficient for
determining how heavily the distance is weighted when
calculating each nearest neighbor’s contribution to the mem-
bership value. Note that the parameters 𝐾 and 𝜑 will affect
the computation result of (27), and they will be optimized
by a grid-search as will be described later. Also, various
other metrics can be chosen for 𝑑(G,G∗

𝑗
), such as Euclidean

distance, Hamming distance [108], andMahalanobis distance
[55, 109].

The quantitative definitions for the aforementioned
𝜇

+
(G∗
𝑗
) and 𝜇−(G∗

𝑗
) in (27) are given by

𝜇

+

(G∗
𝑗
) = {

1, if G∗
𝑗
∈ 𝐶

+

0, otherwise,

𝜇

−

(G∗
𝑗
) = {

1, if G∗
𝑗
∈ 𝐶

−

0, otherwise.

(28)

Substituting the results obtained by (27) into (28), it follows
that if 𝜇+(G) > 𝜇

−
(G) then the query pair G is an

interactive couple; otherwise, noninteractive. In other words,
the outcome can be formulated as

G ∈ {

𝐶

+
, if 𝜇+ (G) > 𝜇− (G)

𝐶

−
, otherwise.

(29)

If there is a tie between 𝜇+(G) and 𝜇−(G), the query pair G
will be randomly assigned to one of the two classes. However,
case like that is quite rare and in this study never happened.

The predictor, thus, established is called iEzy-Drug,
where “i” means identify, and “Ezy-Drug” means the inter-
action between enzyme and drug. To provide an intuitive
overall picture, a flowchart is provided in Figure 2 to show
the process of how the classifier works in identifying enzyme-
drug interactions.
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Input a query
protein sequence and

a drug code

Create Chou's PseAAC of 
a protein

Create feature vector 
of a drug

Feature fusion 

engine
Training 
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Yes No

Noninteractive 
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Interactive enzyme
drug pair 
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Dipeptide
Seq Evol

Grey model

Mol Fpt
Info entropy

CF

FKNN operation

Figure 2: A flowchart to show the operation process of the iEzy-
Drug predictor. See the text for further explanation.

2.4. Criteria for Performance Evaluation. In the literature,
the following equation set is often used for examining the
performance quality of a predictor:

Sn = TP
TP + FN

,

Sp = TN
TN + FP

,

Acc = TP + TN
TP + TN + FP + FN

,

MCC = (TP × TN) − (FP × FN)
√(TP + FP) (TP + FN) (TN + FP) (TN + FN)

,

(30)

where TP represents the true positive; TN, the true negative;
FP, the false positive; FN, the false negative; Sn, the sensitiv-
ity; Sp, the specificity; Acc, the accuracy; MCC, the Mathew’s
correlation coefficient.

To most biologists, however, the four metrics as formu-
lated in (30) are not quite intuitive and easier-to-understand,
particularly for the Mathew’s correlation coefficient. Here,
let us adopt the Chou’s symbols to formulate the previous
four metrics. By means of Chou’s symbols [111, 112], the rates

of correct predictions for the interactive enzyme-drug pairs
in dataset S+ and the noninteractive enzyme-drug pairs in
dataset S− are, respectively, defined by (cf. (1))

Λ

+

=

𝑁

+
− 𝑁

+

−

𝑁

+
, for the interactive enzyme-drug pairs,

Λ

−

=

𝑁

−
− 𝑁

−

+

𝑁

−
, for the noninteractive enzyme-drug pairs,

(31)

where 𝑁+ is the total number of the interactive enzyme-
drug pairs investigated, while 𝑁+

−
is the number of the

interactive enzyme-drug pairs incorrectly predicted as the
noninteractive enzyme-drug pairs; 𝑁− is the total number
of the noninteractive enzyme-drug pairs investigated, while
𝑁

−

+
is the number of the noninteractive enzyme-drug pairs

incorrectly predicted as the interactive enzyme-drug pairs.
The overall success prediction rate is given by [113] as follows:

Λ =

Λ

+
𝑁

+
+ Λ

−
𝑁

−

𝑁

+
+ 𝑁

−
= 1 −

𝑁

+

−
+ 𝑁

−

+

𝑁

+
+ 𝑁

−
.

(32)

It is obvious from (31)-(32) that if and only if none of
the interactive enzyme-drug pairs and the noninteractive
enzyme-drug pairs are mispredicted; that is, 𝑁+

−
= 𝑁

−

+
= 0

and Λ+ = Λ

−
= 1, we have the overall success rate Λ = 1.

Otherwise, the overall success rate would be smaller than 1.
The relations between the symbols in (32) and those in

(30) are given by

TP = 𝑁+ − 𝑁+
−
,

TN = 𝑁

−

− 𝑁

−

+
,

FP = 𝑁−
+
,

FN = 𝑁

+

−
.

(33)

Substituting (33) into (30) and also noting (31)-(32), we obtain

Sn = Λ+ = 1 −
𝑁

+

−

𝑁

+
,

Sp = Λ− = 1 −
𝑁

−

+

𝑁

−
,

Acc = Λ = 1 −
𝑁

+

−
+ 𝑁

−

+

𝑁

+
+ 𝑁

−
,

MCC =
1 − ((𝑁

+

−
/𝑁

+
) + (𝑁

−

+
/𝑁

−
))

√(1 + (𝑁

−

+
− 𝑁

+

−
) /𝑁

+
) (1 + (𝑁

+

−
− 𝑁

−

+
) /𝑁

−
)

.

(34)

Now it is obvious to see from (34): when 𝑁

+

−
= 0

meaning none of the interactive enzyme-drug pairs was
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Figure 3: A 3D plot to show how the parameter in (27) was
optimized for the iEzy-Drug predictor.

mispredicted to be a noninteractive enzyme-drug pair, we
have the sensitivity Sn = 1; while 𝑁+

−
= 𝑁

+ meaning that
all the interactive enzyme-drug pairs weremispredicted to be
the noninteractive enzyme-drug pairs, we have the sensitivity
Sn = 0. Likewise, when 𝑁−

+
= 0 meaning none of the

noninteractive enzyme-drug pairs wasmispredicted, we have
the specificity Sp = 1; while 𝑁−

+
= 𝑁

− meaning all the
noninteractive enzyme-drug pairs were incorrectly predicted
as interactive enzyme-drug pairs, we have the specificity Sp =
0. When𝑁+

−
= 𝑁

−

+
= 0 meaning that none of the interactive

enzyme-drug pairs in the dataset S+ and none of the nonin-
teractive enzyme-drug pairs in S− was incorrectly predicted,
we have the overall accuracy Acc = Λ = 1; while 𝑁+

−
= 𝑁

+

and 𝑁−
+
= 𝑁

− meaning that all the interactive enzyme-drug
pairs in the dataset S+ and all the noninteractive enzyme-
drug pairs in S− were mispredicted, we have the overall
accuracy Acc = Λ = 0. The MCC correlation coefficient is
usually used for measuring the quality of binary (two-class)
classifications. When 𝑁+

−
= 𝑁

−

+
= 0 meaning that none

of the interactive enzyme-drug pairs in the dataset S+ and
none of the noninteractive enzyme-drug pairs in S− were
mispredicted, we have MCC = 1; when 𝑁+

−
= 𝑁

+
/2 and

𝑁

−

+
= 𝑁

−
/2, we have MCC = 0 meaning no better than

random prediction; when 𝑁+
−
= 𝑁

+ and 𝑁−
+
= 𝑁

−, we have
MCC = −1 meaning total disagreement between prediction
and observation. As we can see from the previous discussion,
it is much more intuitive and easier-to-understand when
using (34) to examine a predictor for its sensitivity, specificity,
overall accuracy, and Mathew’s correlation coefficient. It is
instructive to point out that themetrics as defined in (30) and
(34) are valid for single label systems; for multilabel systems,
a set of more complicated metrics should be used as given in
[114].

3. Results and Discussion

3.1. Cross-Validation. How to properly examine the predic-
tion quality is a key for developing a new predictor and

False positive rate
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Figure 4: A plot for the ROC curve to quantitatively show the
performance of the iEzy-Drug predictor.

estimating its potential application value. Generally speak-
ing, the following three cross-validation methods are often
used to examine a predictor of its effectiveness in practical
application: independent dataset test, subsampling or 𝐾-fold
(such as 5-fold, 7-fold, or 10-fold) test, and jackknife test
[108]. However, as elaborated by a penetrating analysis in
[115], considerable arbitrariness exists in the independent
dataset test. Also, as demonstrated by (27)–(29) in [33],
the subsampling test (or 𝐾-fold cross-validation) cannot
avoid arbitrariness either. Only the jackknife test is the least
arbitrary that can always yield a unique result for a given
benchmark dataset. Therefore, the jackknife test has been
widely recognized and increasingly utilized by investigators
to examine the quality of various predictors (see, e.g., [66, 71,
74, 80]). Accordingly, the success rate by the jackknife test was
also used to optimize the two uncertain parameters 𝐾 and 𝜑
in (27). The result, thus, obtained is shown in Figure 3, from
which we obtain when 𝐾 = 6 and 𝜑 = 1.5 the iEzy-Drug
predictor reaches its optimized status.

The success rates thus obtained by the jackknife test in
identifying interactive Enzyme-drug pairs or noninteractive
enzyme-drug pairs on the benchmark dataset S (cf. Online
Supporting Information S1) are given in Table 1, where for
facilitating comparison, the corresponding result by He et al.
[110] is also given. As we can see from the table, the overall
accuracy Acc achieved by iEzy-Drug was 91.03%, remarkably
higher than 85.48%, the corresponding rate obtained by
He et al. [110] on the same benchmark. Furthermore, listed
in Table 1 are also the values obtained by iEzy-Drug for the
other three metrics; that is, Sn = 90.81%, Sp = 91.14%, and
MCC = 80.39%, indicating that the accuracy of iEzy-Drug is
not only very high but also quite stale.

To provide a graphical illustration to show the per-
formance of the current binary classifier iEzy-Drug as
its discrimination threshold is varied, a 2D plot, called
Receiver Operating Characteristic (ROC) curve [116, 117],
was also given (Figure 4). In the ROC curve, the vertical
coordinate 𝑌 is for the true positive rate or Sn (cf. (34)),
while horizontal coordinate 𝑋 for the false positive rate
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Read Me Data Citation

Enter both the protein sequence and the drug code (example): the number of query pairs 
is limited at 10 or less  for each submission.

Submit Clear

You can download the program and run it on your own local computer.

iEzy-Drug: identifying the interaction between enzymes and
drugs in cellular networking

Figure 5: A semiscreenshot to show the top page of the iEzy-Drugweb-server. Its web-site address is at http://www.jci-bioinfo.cn/iEzy-Drug/.

Table 1: The jackknife success rates obtained with iEzy-Drug in identifying interactive enzyme-drug pairs and noninteractive enzyme-drug
pairs for the benchmark dataset S (cf. Online Supporting Information S1).

Method Acc Sn Sp MCC

iEzy-Druga 7425/8157 = 91.03% 2469/2719 = 90.81% 4956/5438 = 91.14% 80.39%
NN predictorb 85.48% N/A N/A N/A
aSee (27) where the parameters𝐾 = 6 and 𝜑 = 1.5.
bSee [110].

or 1-Sp. The best possible prediction method would yield
a point with the coordinate (0, 1) representing 100% true
positive rate (sensitivity Sn) and 0 false positive rate or
100% specificity. Therefore, the (0, 1) point is also called
a perfect classification. A completely random guess would
give a point along a diagonal from the point (0, 0) to (1, 1).
The area under the ROC curve, also called Area Under the
ROC (AUROC), is often used to indicate the performance
quality of a binary classifier; the value 0.5 of AUROC
is equivalent to random prediction, while 1 of AUROC
represents a perfect one. As we can see from Figure 4,
the AUROC value obtained by iEzy-Drug is 0.9377.

The reason why iEzy-Drug can remarkably improve the
prediction quality is that it has introduced the 2D molecular
fingerprints to represent drug samples see Online Supporting
Information S3 for the detailed fingerprint expressions for the
drugs listed in Online Supporting Information S1 and that
it has successfully used PseAAC to incorporate the features
derived from the sequences of enzymes that are essential
for identifying the interaction of enzymes with drugs in the
cellular networking.

To enhance the value of its practical applications, the
web server for iEzy-Drug has been established that can
be freely accessible at http://www.jci-bioinfo.cn/iEzy-Drug/.
It is anticipated that the web server will become a useful
high throughput tool for both basic research and drug

development in the relevant areas, or at the very least play
a complementary role to the existing method [39, 110, 118] for
which so far noweb-serverwhatsoever has been provided yet.

3.2. The Protocol or User Guide. For the convenience of the
vast majority of biologists and pharmaceutical scientists, here
let us provide a step-by-step guide to show how the users
can easily get the desired result by means of the web server
without the need to follow the complicated mathematical
equations presented in this paper for the process of develop-
ing the predictor and its integrity.
Step 1. Open the web server at the site http://www.jci-bio-
info.cn/iEzy-Drug/ and you will see the top page of the
predictor on your computer screen, as shown in Figure 5.
Click on the ReadMe button to see a brief introduction about
iEzy-Drug predictor and the caveat when using it.
Step 2. Either type or copy/paste the query pairs into the
input box at the center of Figure 5. Each query pair consists
of two parts: one is for the protein sequence and the other for
the drug. The enzyme sequence should be in FASTA format,
while the drug in the KEGG code. Examples for the query
pairs input can be seen by clicking on the Example button
right above the input box.
Step 3. Click on the Submit button to see the predicted result.
For example, if you use the four query pairs in the Example

http://www.jci-bioinfo.cn/iEzy-Drug
http://www.jci-bioinfo.cn/iEzy-Drug/
http://www.jci-bioinfo.cn/iEzy-Drug/
http://www.jci-bioinfo.cn/iEzy-Drug/
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window as the input, after clicking the Submit button, you
will see on your screen that the “hsa: 10056” enzyme and
the “D0021” drug are an interactive pair, and that the “hsa:
100” enzyme and the “D0037” drug are also an interactive
pair, but that the “hsa: 3295” enzyme and the “D00889” drug
are not an interactive pair, and that the “hsa: 7366” enzyme
and the “D03601” drug are not an interactive pair either.
All these results are fully consistent with the experimental
observations. It takes about 3 minutes before the results are
shown on the screen.
Step 4. Click on the Citation button to find the relevant paper
that documents the detailed development and algorithm of
iEzy-Durg.
Step 5. Click on the Data button to download the benchmark
dataset used to train and test the iEzy-Durg predictor.
Step 6. The program code is also available by clicking the
button download on the lower panel of Figure 5.
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[44] E. Gregori-Puigjané, R. Garriga-Sust, and J. Mestres, “Indexing
molecules with chemical graph identifiers,” Journal of Compu-
tational Chemistry, vol. 32, no. 12, pp. 2638–2646, 2011.

[45] B. Ren, “Application of novel atom-type AI topological indices
to QSPR studies of alkanes,” Computers and Chemistry, vol. 26,
no. 4, pp. 357–369, 2002.

[46] N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vander-
meersch, and G. R. Hutchison, “Open Babel: an open chemical
toolbox,” Journal of Cheminformatics, vol. 3, p. 33, 2011.

[47] V. J. Gillet, P. Willett, and J. Bradshaw, “Similarity searching
using reduced graphs,” Journal of Chemical Information and
Computer Sciences, vol. 43, no. 2, pp. 338–345, 2003.

[48] D. Butina, “Unsupervised data base clustering based on day-
light’s fingerprint and Tanimoto similarity: a fast and automated
way to cluster small and large data sets,” Journal of Chemical
Information and Computer Sciences, vol. 39, no. 4, pp. 747–750,
1999.

[49] C. E. Shannon, “A mathematical theory of communication,”
ACM SIGMOBILE Mobile Computing and Communications
Review, vol. 5, pp. 3–55, 2001.

[50] V. D. Gusev, L. A. Nemytikova, and N. A. Chuzhanova, “On the
complexity measures of genetic sequences,” Bioinformatics, vol.
15, no. 12, pp. 994–999, 1999.

[51] K. C. Chou and H. B. Shen, “Review: recent progress in protein
subcellular location prediction,” Analytical Biochemistry, vol.
370, no. 1, pp. 1–16, 2007.

[52] S. F. Altschul, “Evaluating the statistical significance of multiple
distinct local alignments,” in Theoretical and Computational
Methods in Genome Research, S. Suhai, Ed., pp. 1–14, Plenum,
New York, NY, USA, 1997.

[53] J. C. Wootton and S. Federhen, “Statistics of local complexity in
amino acid sequences and sequence databases,” Computers and
Chemistry, vol. 17, no. 2, pp. 149–163, 1993.

[54] H. Nakashima, K. Nishikawa, and T. Ooi, “The folding type of
a protein is relevant to the amino acid composition,” Journal of
Biochemistry, vol. 99, no. 1, pp. 153–162, 1986.

[55] K. C. Chou and C. T. Zhang, “Predicting protein folding types
by distance functions that make allowances for amino acid
interactions,” The Journal of Biological Chemistry, vol. 269, no.
35, pp. 22014–22020, 1994.

[56] K.-C. Chou, “A novel approach to predicting protein structural
classes in a (20-1)-D amino acid composition space,” Proteins,
vol. 21, no. 4, pp. 319–344, 1995.

[57] H. Nakashima and K. Nishikawa, “Discrimination of intracel-
lular and extracellular proteins using amino acid composition
and residue-pair frequencies,” Journal of Molecular Biology, vol.
238, no. 1, pp. 54–61, 1994.



12 BioMed Research International

[58] G. P. Zhou, “An intriguing controversy over protein structural
class prediction,” Journal of Protein Chemistry, vol. 17, no. 8, pp.
729–738, 1998.

[59] I. Bahar, A. R. Atilgan, R. L. Jernigan, and B. Erman, “Under-
standing the recognition of protein structural classes by amino
acid composition,” Proteins, vol. 29, pp. 172–185, 1997.

[60] J. Cedano, P. Aloy, J. A. Perez-Pons, and E. Querol, “Relation
between amino acid composition and cellular location of
proteins,” Journal of Molecular Biology, vol. 266, no. 3, pp. 594–
600, 1997.

[61] G. P. Zhou and K. Doctor, “Subcellular location prediction of
apoptosis proteins,” Proteins, vol. 50, no. 1, pp. 44–48, 2003.

[62] K.Chou, “Prediction of protein cellular attributes using pseudo-
amino acid composition,” Proteins, vol. 43, pp. 246–255, 2001,
(Erratum in: Proteins, vol. 44, p. 60, 2001).

[63] K. C. Chou, “Using amphiphilic pseudo amino acid composi-
tion to predict enzyme subfamily classes,” Bioinformatics, vol.
21, no. 1, pp. 10–19, 2005.

[64] D. Zou, Z. He, J. He, and Y. Xia, “Supersecondary structure
prediction using Chou’s pseudo amino acid composition,”
Journal of Computational Chemistry, vol. 32, no. 2, pp. 271–278,
2011.

[65] M. M. Beigi, M. Behjati, and H. Mohabatkar, “Prediction of
metalloproteinase family based on the concept ofChou’s pseudo
amino acid composition using a machine learning approach,”
Journal of Structural and Functional Genomics, vol. 12, no. 4, pp.
191–197, 2011.

[66] Y. K. Chen and K. B. Li, “Predicting membrane protein types
by incorporating protein topology, domains, signal peptides,
and physicochemical properties into the general form of Chou’s
pseudo amino acid composition,” Journal ofTheoretical Biology,
vol. 318, pp. 1–12, 2013.

[67] C. Huang and J. Q. Yuan, “A multilabel model based on Chou’s
pseudo-amino acid composition for identifying membrane
proteins with both single and multiple functional types,” The
Journal of Membrane Biology, vol. 246, pp. 327–334, 2013.

[68] S. S. Sahu and G. Panda, “A novel feature representation
method based on Chou’s pseudo amino acid composition for
protein structural class prediction,” Computational Biology and
Chemistry, vol. 34, no. 5-6, pp. 320–327, 2010.

[69] M. Hayat and A. Khan, “Discriminating outer membrane
proteins with fuzzy K-nearest neighbor algorithms based on the
general form of Chou’s PseAAC,” Protein and Peptide Letters,
vol. 19, no. 4, pp. 411–421, 2012.

[70] M.Khosravian, F. K. Faramarzi,M.M. Beigi,M. Behbahani, and
H. Mohabatkar, “Predicting antibacterial peptides by the con-
cept of Chou’s pseudo-amino acid composition and machine
learning methods,” Protein & Peptide Letters, vol. 20, pp. 180–
186, 2013.

[71] H.Mohabatkar,M.M. Beigi, K. Abdolahi, and S.Mohsenzadeh,
“Prediction of allergenic proteins by means of the concept of
Chou’s pseudo amino acid composition and amachine learning
approach,”Medicinal Chemistry, vol. 9, pp. 133–137, 2013.

[72] L. Nanni, A. Lumini, D. Gupta, and A. Garg, “Identifying
bacterial virulent proteins by fusing a set of classifiers based
on variants of Chou’s pseudo amino acid composition and on
evolutionary information,” IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics, vol. 9, no. 2, pp. 467–475,
2012.

[73] T. H. Chang, L. C. Wu, T. Y. Lee, S. P. Chen, H. D. Huang, and
J. T. Horng, “EuLoc: a web-server for accurately predict protein

subcellular localization in eukaryotes by incorporating various
features of sequence segments into the general form of Chou’s
PseAAC,” Journal of Computer-Aided Molecular Design, vol. 27,
pp. 91–103, 2013.

[74] S. Zhang, Y. Zhang, H. Yang, C. Zhao, and Q. Pan, “Using the
concept of Chou’s pseudo amino acid composition to predict
protein subcellular localization: an approach by incorporating
evolutionary information and von Neumann entropies,” Amino
Acids, vol. 34, no. 4, pp. 565–572, 2008.

[75] R. Zia Ur and A. Khan, “Identifying GPCRs and their types
with Chou’s pseudo amino acid composition: an approach from
multi-scale energy representation and position specific scoring
matrix,” Protein & Peptide Letters, vol. 19, pp. 890–903, 2012.

[76] X. Y. Sun, S. P. Shi, J. D. Qiu, S. B. Suo, S. Y. Huang, and R. P.
Liang, “Identifying protein quaternary structural attributes by
incorporating physicochemical properties into the general form
of Chou’s PseAAC via discrete wavelet transform,” Molecular
BioSystems, vol. 8, pp. 3178–3184, 2012.

[77] L. Nanni and A. Lumini, “Genetic programming for creating
Chou’s pseudo amino acid based features for submitochondria
localization,” Amino Acids, vol. 34, no. 4, pp. 653–660, 2008.

[78] M. Esmaeili, H. Mohabatkar, and S. Mohsenzadeh, “Using the
concept of Chou’s pseudo amino acid composition for risk type
prediction of human papillomaviruses,” Journal of Theoretical
Biology, vol. 263, no. 2, pp. 203–209, 2010.

[79] H. Mohabatkar, “Prediction of cyclin proteins using Chou’s
pseudo amino acid composition,” Protein and Peptide Letters,
vol. 17, no. 10, pp. 1207–1214, 2010.

[80] H. Mohabatkar, M. M. Beigi, and A. Esmaeili, “Prediction
of GABA(A) receptor proteins using the concept of Chou’s
pseudo-amino acid composition and support vector machine,”
Journal of Theoretical Biology, vol. 281, no. 1, pp. 18–23, 2011.

[81] Y. Xu, J. Ding, L. Y. Wu, and K. C. Chou, “iSNO-PseAAC: pre-
dict cysteine S-nitrosylation sites in proteins by incorporating
position specific amino acid propensity into pseudo amino acid
composition,” PLoS ONE, vol. 8, Article ID e55844, 2013.

[82] W. Chen, H. Lin, P.M. Feng, C. Ding, Y. C. Zuo, andK. C. Chou,
“iNuc-PhysChem: a sequence-based predictor for identifying
nucleosomes via physicochemical properties,” PLoS ONE, vol.
7, Article ID e47843, 2012.

[83] B. Li, T. Huang, L. Liu, Y. Cai, and K. C. Chou, “Identification
of colorectal cancer related genes with mrmr and shortest path
in protein-protein interaction network,” PLoS ONE, vol. 7, no. 4,
Article ID e33393, 2012.

[84] Y. Jiang, T. Huang, C. Lei, Y. F. Gao, Y. D. Cai, and K. C. Chou,
“Signal propagation in protein interaction network during
colorectal cancer progression,” BioMed Research International,
vol. 2013, Article ID 287019, 9 pages, 2013.

[85] P. Du, X. Wang, C. Xu, and Y. Gao, “PseAAC-Builder: a
cross-platform stand-alone program for generating various
special Chou’s pseudo-amino acid compositions,” Analytical
Biochemistry, vol. 425, no. 2, pp. 117–119, 2012.

[86] D. S. Cao, Q. S. Xu, and Y. Z. Liang, “Propy: a tool to generate
various modes of Chou’s PseAAC,” Bioinformatics, vol. 29, pp.
960–962, 2013.

[87] H. Shen and K. C. Chou, “PseAAC: a flexible web server
for generating various kinds of protein pseudo amino acid
composition,” Analytical Biochemistry, vol. 373, no. 2, pp. 386–
388, 2008.

[88] K. C. Chou, “Using pair-coupled amino acid composition to
predict protein secondary structure content,” Journal of Protein
Chemistry, vol. 18, no. 4, pp. 473–480, 1999.



BioMed Research International 13

[89] W. Liu and K. C. Chou, “Prediction of protein secondary
structure content,” Protein Engineering, vol. 12, no. 12, pp. 1041–
1050, 1999.

[90] M. Bhasin and G. P. S. Raghava, “Classification of nuclear
receptors based on amino acid composition and dipeptide
composition,” The Journal of Biological Chemistry, vol. 279, no.
22, pp. 23262–23266, 2004.

[91] H. Lin andH. Ding, “Predicting ion channels and their types by
the dipeptidemode of pseudo amino acid composition,” Journal
of Theoretical Biology, vol. 269, no. 1, pp. 64–69, 2011.

[92] H. Lin and Q. Li, “Using pseudo amino acid composition to
predict protein structural class: approached by incorporating
400 dipeptide components,” Journal of Computational Chem-
istry, vol. 28, no. 9, pp. 1463–1466, 2007.

[93] L. Nanni and A. Lumini, “Combing ontologies and dipeptide
composition for predicting DNA-binding proteins,” Amino
Acids, vol. 34, no. 4, pp. 635–641, 2008.

[94] K.-C. Chou, “The convergence-divergence duality in lectin
domains of selectin family and its implications,” FEBS Letters,
vol. 363, no. 1-2, pp. 123–126, 1995.

[95] A. A. Schäffer, L. Aravind, T. L. Madden et al., “Improving
the accuracy of PSI-BLAST protein database searches with
composition-based statistics and other refinements,” Nucleic
Acids Research, vol. 29, no. 14, pp. 2994–3005, 2001.

[96] S. F. Altschul and E. V. Koonin, “Iterated profile searches with
PSI-BLAST: a tool for discovery in protein databases,” Trends in
Biochemical Sciences, vol. 23, no. 11, pp. 444–447, 1998.

[97] J. Deng, “Grey entropy and grey target decision making,”
Journal of Grey System, vol. 22, no. 1, pp. 1–24, 2010.

[98] B. M. Bolstad, R. A. Irizarry, M. Åstrand, and T. P. Speed, “A
comparison of normalizationmethods for high density oligonu-
cleotide array data based on variance and bias,” Bioinformatics,
vol. 19, no. 2, pp. 185–193, 2003.

[99] J.-Y. Shi, S.-W. Zhang, Q. Pan, Y.-M. Cheng, and J. Xie,
“Prediction of protein subcellular localization by support vector
machines using multi-scale energy and pseudo amino acid
composition,” Amino Acids, vol. 33, no. 1, pp. 69–74, 2007.

[100] T. Denoeux, “A 𝜅-nearest neighbor classification rule based on
Dempster-Shafer theory,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 25, no. 5, pp. 804–813, 1995.

[101] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest
neighbours algorithm,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 15, no. 4, pp. 580–585, 1985.

[102] X. Xiao, P. Wang, and K. Chou, “iNR-physchem: a sequence-
based predictor for identifying nuclear receptors and their
subfamilies via physical-chemical property matrix,” PLoS ONE,
vol. 7, no. 2, Article ID e30869, 2012.

[103] I. Roterman, L. Konieczny, W. Jurkowski, K. Prymula, and M.
Banach, “Two-intermediate model to characterize the structure
of fast-folding proteins,” Journal of Theoretical Biology, vol. 283,
no. 1, pp. 60–70, 2011.

[104] X. Xiao, P. Wang, and K. C. Chou, “GPCR-2L: predicting G
protein-coupled receptors and their types by hybridizing two
differentmodes of pseudo amino acid compositions,”Molecular
BioSystems, vol. 7, no. 3, pp. 911–919, 2011.

[105] X. Xiao, P. Wang, and K. C. Chou, “Quat-2L: a web-server for
predicting protein quaternary structural attributes,” Molecular
Diversity, vol. 15, no. 1, pp. 149–155, 2011.

[106] X. Zheng, C. Li, and J. Wang, “An information-theoretic
approach to the prediction of protein structural class,” Journal
of Computational Chemistry, vol. 31, no. 6, pp. 1201–1206, 2010.

[107] H. Shen, J. Yang, X. Liu, and K. C. Chou, “Using supervised
fuzzy clustering to predict protein structural classes,” Biochem-
ical and Biophysical Research Communications, vol. 334, no. 2,
pp. 577–581, 2005.

[108] K.-C. Chou and C.-T. Zhang, “Review: prediction of protein
structural classes,” Critical Reviews in Biochemistry and Molec-
ular Biology, vol. 30, no. 4, pp. 275–349, 1995.

[109] P. C. Mahalanobis, “On the generalized distance in statistics,”
Proceedings of the National Institute of Sciences of India, vol. 2,
pp. 49–55, 1936.

[110] R. M. Centor, “Signal detectability: the use of ROC curves and
their analyses,”Medical Decision Making, vol. 11, no. 2, pp. 102–
106, 1991.

[111] K.-C. Chou, “Using subsite coupling to predict signal peptides,”
Protein Engineering, vol. 14, no. 2, pp. 75–79, 2001.

[112] K. C. Chou, “Prediction of protein signal sequences and their
cleavage sites,” Proteins, vol. 42, pp. 136–139, 2001.

[113] K. C. Chou, “Prediction of signal peptides using scaledwindow,”
Peptides, vol. 22, no. 12, pp. 1973–1979, 2001.

[114] K. C. Chou, “Some remarks on predicting multi-label attributes
inmolecular biosystems,”Molecular Biosystems, vol. 9, pp. 1092–
1100, 2013.

[115] K. C. Chou and H. B. Shen, “Cell-PLoc 2. 0: an improved
package of web-servers for predicting subcellular localization of
proteins in various organisms,”Natural Science, vol. 2, pp. 1090–
1103, 2010.

[116] M. Gribskov and N. L. Robinson, “Use of receiver operating
characteristic (ROC) analysis to evaluate sequence matching,”
Computers and Chemistry, vol. 20, no. 1, pp. 25–33, 1996.

[117] Y. Yamanishi, M. Kotera, M. Kanehisa, and S. Goto, “Drug-
target interaction prediction from chemical, genomic and phar-
macological data in an integrated framework,” Bioinformatics,
vol. 26, no. 12, pp. i246–i254, 2010.

[118] Z. He, J. Zhang, X. Shi et al., “Predicting drug-target interaction
networks based on functional groups and biological features,”
PLoS ONE, vol. 5, no. 3, Article ID e9603, 2010.


