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Abstract The incidence of Candida infections have

increased substantially in recent years due to aggressive

use of immunosuppressants among patients. Use of broad-

spectrum antibiotics and intravascular catheters in the

intensive care unit have also attributed with high risks of

candidiasis among immunocompromised patients. Among

Candida species, C. albicans accounts for the majority of

superficial and systemic infections, usually associated with

high morbidity and mortality often caused due to increase

in antimicrobial resistance and restricted number of anti-

fungal drugs. Therefore, early detection of candidemia and

correct identification of Candida species are indispensable

pre-requisites for appropriate therapeutic intervention.

Since blood culture based methods lack sensitivity, and

species-specific identification by conventional method is

time-consuming and often leads to misdiagnosis within

closely related species, hence, molecular methods may

provide alternative for accurate and rapid identification of

Candida species. Although, several molecular approaches

have been developed for accurate identification of Candida

species but the internal transcribed spacer 1 and 2 (ITS1

and ITS2) regions of the rRNA gene are being used

extensively in a variety of formats. Of note, ITS sequenc-

ing and PCR–RFLP analysis of ITS region seems to be

promising as a rapid, easy, and cost-effective method for

identification of Candida species. Here, we review a

number of existing techniques ranging from conventional

to molecular approaches currently in use for the identifi-

cation of Candida species. Further, advantages and limi-

tations of these methods are also discussed with respect to

their discriminatory power, reproducibility, and ease of

performance.
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Introduction

Candida species are ubiquitous fungi and most common

fungal pathogens infecting humans. Pathogenic Candida

species were earlier confined to the human and animal

reservoirs but they are now frequently recovered from the

hospital environment, such as from foods, counter tops, air-

conditioning vents, floors, respirators, and medical per-

sonnel (Ferreira et al. 2013; Sabino et al. 2011). They have

predominantly unicellular mode of development. More

than 200 species of Candida are known, but only a small

proportion of them are found in man, and of these only a

handful create clinical problems (Pappas 2006). An inter-

esting feature of C. albicans is its ability to grow in two

different ways: reproduction by budding, forming an

ellipsoid bud, and in hyphal form, which can periodically

fragment and give rise to new mycelia, or yeast-like forms

(Fig. 1). It lacks a sexual cycle and is a diploid organism,

which has made it difficult to manipulate genetically (Odds
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1988). The most critical criterion for pathogenicity of C.

albicans is the induction of the mycelial form by serum or

macrophages. Its pathogenicity has been attributed to its

ability to switch between the yeast and hyphal mode of

growth (Cutler 1991; Leberer et al. 1997; Lo et al. 1997). It

is the most common fungal pathogen that exists as a

harmless commensal in the gastrointestinal and genitouri-

nary tracts in about 70 % of humans (Ruhnke and Mas-

chmeyer 2002; Meiller et al. 2009; Schulze and

Sonnenborn 2009; Sobel 1997). However, it becomes

opportunistic pathogen in immunocompromised patients,

or sub-immunocompromised individuals, or even some

times in healthy persons (Alby et al. 2009; Pfaller and

Diekema 2004). Among Candida species C. albicans

accounts for the majority of systemic and superficial

infections. The infection caused by C. albicans is com-

monly known as candidiasis and it can be classified into

two categories depending upon the severity of the disease.

The first category is characterized by mucosal infections,

which generally affect gastrointestinal epithelial cells,

oropharyngeal mucosa and vagina. Vulvo Vaginal Candi-

diasis (VVC) is common among women and some of them

experiences repeated occurrences of this infection, which is

known as Recurrent Vulvo Vaginal Candidiasis (RVVC).

About 75 % of women suffer from Candida infection at

least once in their lifetime. It can also cause life-threaten-

ing systemic infections to severely ill patients in whom

mortality rate is about 30 % (Odds 1988; Soll et al. 1988;

Calderone 2002; Sexton et al. 2007). Systemic Candida

infections are common to immunocompromised individu-

als, including HIV-infected patients, transplant and

chemotherapy recipients, and low-birth weight infants

(Pfaller and Diekema 2007; Schelenz 2008). Although C.

albicans is a major infectious agent responsible for can-

diasis but some non-albicans species like C. glabrata, C.

krusei, C. dubliniensis, C. parapsilosis, and C. tropicalis

have also gain importance due to their frequent recovery

from infected individuals (Gozalbo et al. 2004).

With the development in healthcare system worldwide,

the number of elderly people and immunocompromised

patients has increased dramatically. As a result, the rate of

opportunistic infections caused by various microbes has

also increased many folds. The growing interest of the

scientific and medical communities in Candida sp. is

reflected directly by a steady rise in the number of reports

on the incidence of Candida infections over the past dec-

ade. It has been observed that Candida species are one of

the four most common causes of bloodstream and cardio-

vascular infections in US hospitals (Gudlaugsson et al.

2003; Calderone 2002). Bloodstream infections caused by

Candida are responsible for as high as 50 % mortality rate

among the infected patients (Gudlaugsson et al. 2003;

Eggimann et al. 2003b). In case of neonatal care units,

Candida related bloodstream infections are even more

frequent (Patel and Saiman 2010). Because of these out-

lined ailments, C. albicans has gained importance as a

potential human pathogen, which warrants detailed study

of this organism to understand its biology.

Epidemiology

Candida is the fourth pathogen, and the leading fungal

pathogen responsible for bloodstream infections (BSI) in

the USA and it accounts for 8–10 % of all BSIs acquired in

the hospital (Wisplinghoff et al. 2004). In Europe, Candida

is one of the major causes of nosocomial bloodstream

infections (Marchetti et al. 2004; Fluit et al. 2000).

According to a survey conducted between 1991 and 2000

by the Fungal Infection Network of Switzerland, ICUs and

surgical wards accounted for about two-third of all epi-

sodes of candidaemia (Marchetti et al. 2004). According to

the study of Falagas and his colleagues, the different sur-

veillances shows that C. albicans was the predominant

species in almost all studies. C. albicans predominated in

the countries of North Europe and Switzerland ([60 %),

was equally isolated in the remaining European countries

and the USA ranging from 45 to 58 %, and was lower in

Asia and South America approximately 40–42 %. On the

other hand, non albicans species dominated in Asia. The

highest proportions of C. glabrata were reported in studies

from the USA (18.8–24 %) and the UK (22.7 %) and the

lowest were reported in studies from Brazil and Kuwait 4.9

and 5.6 %, respectively. C. parapsilosis was more

Fig. 1 Candida albicans showing budding (solid arrow) and yeast-

like form (dotted arrow)
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frequently isolated in Kuwait (30.6 %), South America

(20.5–21.3 %), Spain (23 %), Australia (19.9 %), and the

lowest proportion was found in Switzerland (1–5 %) and

North Europe (4.4 %). C. tropicalis held higher propor-

tions in South America (20.9–24.2 %) and Taiwan

(22.4 %), intermediate in the USA (11–12 %), and lowest

in Central and North Europe (4 %) (Falagas et al. 2010).

The specific epidemiology regarding the incidence of

candidaemia and distribution of Candida spp. (C. albicans

versus non-albicans Candida spp.) varies markedly

between institutions and patient cohorts (Luzzati et al.

2000; Slavin et al. 2004; Laupland et al. 2005; Lipsett

2006; Horvath et al. 2007). The Australian population-

based surveillance report indicated C. albicans as the

predominant species (47.3 %), with the next most frequent

isolates being C. parapsilosis (19.9 %) and C. glabrata

(15.4 %) (Chen et al. 2006). A study in a French burns unit

identified C. albicans (65 %), C. parapsilosis (25 %), and

C. tropicalis (10 %) as the common isolates in episodes of

candidaemia. The attributable mortality rate for candida-

emia in burns is reported as ranging from 14 to 70 %

(Vinsonneau et al. 2009). In a retrospective study con-

ducted in a university hospital in Saudi Arabia during the

years 1991–2000 showed a total of 189 episodes of can-

didaemia, of which 121 (64 %) occurred during

1991–1995, whereas only 68 cases (36 %) were found

between 1996 and 2000. Candida albicans was found to be

the causal organism in 50.3 % episodes followed by C.

tropicalis (27 %), C. parapsilosis (7.9 %), C. glabrata

(7.4 %), C. krusei (3.2 %), C. famata (1.0 %). The per-

centage of episodes of candidaemia caused by C. albicans

ranged from 36.4 % in 1991 to 71.4 % in 2000, revealing

more than 100 % increase during the study period. The

incidence of non C. albicans candidaemia decreased from

63 (33.3 %) during the first 5 years (1991–1995) to 31

(16.4 %) episodes during the second 5 years (Al-Hedaithy

2003). Interestingly, no candidaemia was occurred due to

C. glabrata and C. krusei during the last 3 years. Overall,

during the years of the study, a decreasing trend of can-

didaemia was observed. When analyzed with the underly-

ing medical condition, candidaemia occurred more

frequently in patients with leukemia (24 %), prematurity

(16 %), post-surgery (10.6 %), and lymphoma (9.5 %).

Candida albicans occurred more frequently (70–77 %) in

patients with respiratory infections, preterm infants, TB,

diabetes, and postoperative patients. On the other hand, non

C. albicans species were more common among patients

with leukemia (62 %), lymphoma (66.7 %), hepatic

(77.8 %), and renal (62.5 %) disorders. Among patients

with leukemia, C. tropicalis was isolated more frequently

(42.2 %) followed by C. albicans (38 %). Candida albi-

cans and C. tropicalis were the main species recovered

from candidaemia in patients with respiratory infections. In

the study, the involvement of C. dubliniensis for candida-

emia was reported for the first time in Saudi Arabia. The

age of patients in the study was ranged between 15 days to

80 years. The annual incidence of episodes of candidaemia

during the years 1991–1995 were similar while that during

1996–2000 was decreased. A similar finding was also

reported by another investigator from Riyadh, Saudi Arabia

in which a total of 98 distinct episodes of candidaemia

were identified during January 1996 to December 2004.

The most frequent Candida species were C. albicans

(53 %). Among non C. albicans, C. tropicalis was found to

be involved in 19 % followed by C. parapsilosis (16 %)

and C. glabrata (7 %). The overall crude mortality rate

from the study was estimated at 43 % for all candidaemia

(Al-Tawfiq 2007). In a study conducted at King Abdulaziz

University hospital, Jeddah, Saudi Arabia, thirty-one

candidemic episodes were identified. All the candidemic

episodes were hospital acquired. The most common risk

factors to candidaemia were central venous catheters

(87 %), stay in intensive care unit (ICU) (77 %), and

broad-spectrum antibiotics therapy (74 %). Candida albi-

cans was the most frequently isolated species (71 %),

followed by Candida tropicalis and Candida parapsilosis

13 % each (Akbar and Tahawi 2001). Although estimated

attributable mortality rate of candidaemia from various

studies around the globe is, more than 30 % (range

24–60 %, median 38 %). However, among different

patient cohorts, the crude mortality rate has been reported

to be more than 50 % (range 13–90 %, median 55 %)

(Lemmen et al. 2000; Cochran et al. 2002; Eggimann et al.

2003a; Charles et al. 2005; Chen et al. 2006; Ballard et al.

2008).

Identification of Candida

Non-molecular methods

Conventional

Classical methods for the identification of yeast begin with

the isolation of the microorganisms from the clinical

specimens. Complete identification by conventional meth-

ods can take 24–48 h or even longer from blood culture. It

is usually possible to distinguish Candida isolates from the

culture medium using methods, which include the germ

tube test, chlamydospore formation, and the fermentation

or assimilation of sugars (Fig. 2). The germ-tube test is a

rapid identification method for C. albicans (2–4 h), but it is

not always 100 % percent accurate since approximately

5 % of C. albicans isolates do not produce germ tubes

(Perry and Miller 1987; Odds 1988), while some Candida

tropicalis isolates are also germ-tube producers (Martin
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and White 1981). The differentiation between C. dublini-

ensis and C. albicans is done on the basis of ability to grow

on the Sabouraud dextrose agar (SDA) or broth medium

containing 6.5 % NaCl. C. albicans grows well whereas C.

dubliniensis are unable to grow at 6.5 % NaCl in the

medium (Alves et al. 2002). Another method of differen-

tiation between C. dubliniensis and C. albicans is the

ability of C. albicans to grow at elevated temperatures. C.

dubliniensis can grow well at 30 �C and 37 �C, producing

creamy white colonies on solid media similar to C. albi-

cans. However, differing from C. albicans, it grows poorly

or unable to grow at 42 �C on SDA or potato dextrose agar

(Sullivan et al. 1995). Moreover, this technique is depen-

dent on the expertise of the technical personnel who per-

form the test and also affected by laboratory conditions

(Fenn et al. 1996; Salkin et al. 1987). These factors com-

plicate the accurate interpretation of this test. In the case of

methods where the assimilation or fermentation of sugars is

evaluated, complete identification can take 18–72 h. Con-

ventional diagnostic procedures, such as blood culture and

biochemical tests lack the degree of sensitivity and speci-

ficity that would ensure reliable and early diagnosis of

invasive Candida infections (White et al. 2003; Stevens

2002). The importance of identifying the pathogens as

rapidly as possible has lead to the development of differ-

ential media for the presumptive identification of yeasts in

1970s. Several chromogenic media for isolation and iden-

tification of Candida species has been developed and are

available (Letscher-Bru et al. 2002). The basis of these

media are the formation of different colored colonies with

varied morphology which result from the cleavage of

chromogenic substrates by species specific enzymes

(Bauters and Nelis 2002). Examples of commercially

available chromogenic agars include CHROMagar Can-

dida, Fluroplate, Candichrom (Nickersok 1953), Pagano-

Levin agar (Pagano et al. 1957), Costa-de Lourdes Branco

(Costa and Brancocde 1964), and Albicans ID (Lipperheide

et al. 1993), CHROMagar, BiGGY agar, Corn Meal agar

etc. The growth morphology of different Candida species

on Tween 80 Corn Meal agar is presented in Fig. 3.

Commercial tests and kits available for Candida identifi-

cation are summarized in Table 1.

Molecular methods

Non-DNA based techniques

Serological Serological methods for the diagnosis of

invasive candidiasis were began some 60 years back when

blood culture detection techniques often failed to recover

Candida organisms (Bodey 1966; Myerowitz et al. 1977)

and only antibody detection could provide useful data for

the clinician (Taschdjian et al. 1973). The use of immu-

nological tests with specific antisera has been described

using either polyclonal or monoclonal antibodies (Brawner

and Cutler 1984; Cassone et al. 1988; Guinet and Bruneau

1991; Hopwood et al. 1986; Polonelli and Morace 1986;

Shinoda et al. 1981; Taguchi et al. 1979). A large number

of assays has been developed and are commercially

available for the detection of circulating Candida antigens

such as latex agglutination, ELISA, immunoblotting, dot

immunoassay, liposomal immunoassay, and RIA (Ponton

et al. 2002). These assays depend on the detection of

antigens, which include mannan and mannoproteins, glu-

can, HSP90, enolase, and other immunodominant cyto-

plasmic antigens. However, serological method has some

limitations such as diagnosis is often delayed and the test

lacks sensitivity and specificity. Furthermore, antibody

detection for the diagnosis of candidiasis has been limited

by false negative results in immunocompromised patients

where there is low or undetectable level of antibody. This

is due to the fact that fungal antigens and metabolites are

usually cleared rapidly from the circulation. Moreover, the

presence of antibodies does not always mean a Candida

Fig. 2 Candida albicans showing a Germ tube formation in horse serum b Thick walled chlamydospores on CMA
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infection, particularly in patients with serious underlying

disease or who are taking immunosuppressive drugs (Yeo

and Wong 2002). The superficial colonization of Candida

in some patients is the major reason of false positive results

and thus consequently limits its wide use (Wahyuningsih

et al. 2000a).

Spectroscopic There are several spectroscopic methods to

identify the Candida such as Mass spectroscopy, FTIR,

MALDI-TOF–MS.

(a) Matrix-assisted laser desorption/Ionization-time of

flight-mass spectrometry

Mass spectrometry (MS), is a technique that separates

molecules based on differences in mass/charge ratio. It was

first described in 1912 by J. J. Thompson (Budzikiewicz

and Grigsby 2006). This technique soon becomes a vital

tool in the identification, quantization, and detection of

small chemical structures. The mass spectrometry was first

used to identify microorganisms in 1975 (Anhalt and

Fenselau 1975). However, mass spectrometry technique

got a setback from irreproducible results due to the vari-

abilities caused by the growth conditions and media. The

analysis of large biomolecules including ribosomal pro-

teins became possible only in 1980s when matrix-assisted

laser desorption/ionization time of flight (MALDI-TOF)

technique was coupled with mass spectrometry (Hillenk-

amp and Karas 1990). The later are less influenced by

culture conditions allowing MALDI–TOF–MS to be con-

sistently used to differentiate bacterial species (Claydon

et al. 1996; Holland et al. 1996; Demirev et al. 1999;

Fenselau and Demirev 2001; Krishnamurthy et al. 1996).

Among the spectroscopic techniques, MALDI–TOF MS is

the most widely used method to date for the analysis of

biomolecules. MALDI–TOF–MS embeds the large bio-

molecules of interest in a crystalline matrix, usually a UV-

absorbing organic acid (Lewis et al. 2000). When energy is

added in the form of laser pulses with a wavelength mat-

ched to the absorption maximum of this matrix, this energy

is efficiently transferred from the matrix to the analyte

creating ‘‘charged vapor’’ of the biomolecules of interest

(Adam 2002; Karas and Hillenkamp 1988). The particles in

this vapor are accelerated and separated under the influence

of electric field, requiring different times to reach the

detector referred to as the time of flight. This creates a

pattern of peak at the detector, the mass spectrum.

Microorganisms are basically the complex mixtures of

biomolecules and hence can be suitably subjected for

MALDI–TOF–MS. The co-crystallization of a bacterial

colony with the matrix is the only handling required before

the analysis of sample with laser pulses. The resulting

spectra are species-specific and highly reproducible as the

analytical range 2–20 kDa mainly represents ribosomal

proteins, which are always expressed and highly abundant

(Ryzhov and Fenselau 2001). The spectrum is compared to

a library of reference spectra, leading to identification. In

Fig. 3 The growth morphology of different Candida species on Tween 80 Corn Meal agar (CMA). a C. albicans, b C. glabrata, c C.

Parapsilosis, d C. krusei, e C. Kefyr and f C. tropicalis. Cells were viewed under Zeiss microscope (Axioskop2 MOT model)
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recent years, MALDI-TOF–MS has been implemented in

routine laboratories and utilized as a completely new

approach for the identification of bacteria and yeast.

MALDI-TOF MS undeniably changed the laboratory

practices in bacteriology. Since it is a very sensitive tech-

nique, only a small amount of microbial biomass is

required for analysis. Several investigators have success-

fully identified Candida species using MALDI-TOF-MS.

Veen and his colleagues evaluated the accuracy of

MALDI-TOF-MS in identifying yeast isolates, including

Candida (C. albicans, C. dubliniensis, C. glabrata, C.

kefyr, C. krusei, C. parapsilosis, C. tropicalis, C. lusita-

niae), Saccharomyces cerevisiae, Galactomyces geotri-

chum, Geotrichum spp. Magnusiomyces capitatus,

Rhodotorula glutinis, and Trichosporon mucoides. They

reported that a total of 78 out of 80 isolates (97.5 %) were

correctly identified at the genus level and 70(87.5 %) were

identified at the species level. The remaining Candida

species were not identified due to non availability of ref-

erence MALDI-TOF-MS spectra of the corresponding

Candida species in the database (Veen et al. 2010). In

another study, 247 out of 267 clinical Candida isolates

from 15 different species were identified correctly by

MALDI-TOF-MS (Marklein et al. 2009). In an investiga-

tion, a total of 103 isolates from Candida parapsilosis, C.

orthopsilosis and C. metapsilosis were identified by py-

rosequencing of the ITS1 region and then assayed by

MALDI-TOF mass spectrometry. Concordance between

these two methods was found to be 100 %, suggesting that

MALDI-TOF may be useful as a rapid and reliable method

for discrimination of species within the C. parapsilosis

group (Quiles-Melero et al. 2012). Herendael and co-

Table 1 Tests and kits available for identification of Candida species

Test/kit Principle Duration (h)

a. Conventional methods

Germ tube test Presence of hypha in C. albicans 24–36

Chlamydospore

formation

Sporulation 24–72

Biochemical tests Assimilation/fermentation of carbohydrates 48

API Candida Assimilation/fermentation of carbohydrates 18/24

ID YST/VITEK 2 Biochemical tests 15

API 20C AUX Assimilation tests

Pagano-Levin

Agar

Color change/reduction of triphenyltetrazolium to triphenylformazin 48

Candida ID Agar Hydrolysis indolyl glucosaminide by C. albicans 48

Albican ID A chromogenic substrate hydrolyzed by the hexosaminidase of C. albicans [24

Fluoroplate A fluorogenic substrate hydrolyzed by the hexosaminidase of C. albicans [24

CHROM Agar b-glucosaminidase metabolized to produce colored colonies of different Candida spp. 48

BiGGY Agar Reduction of bismuth sulfite to bismuth sulfide 48

Corn Meal Agar Stimulates sporulation in Candida [48

Candida

Diagnostic Agar

Glucosaminidase hydrolysis by different species of Candida to produce varying color 48

AlbiQuick Detection of the enzymes b -galactosaminidase and L-proline aminopeptidase [24

ChromID Candida Hydrolysis of a hexosaminidase chromogenic substrate producing different colours 24

CandiSelect 4 Candida identification based on specific enzymatic activity resulting in the

formation of colored colonies

48

b. Molecular methods

Serological Immunological assay based antigen–antibody reaction against mannan,

mannoprotien, glucan, HSP90, enolase etc.

[24

FTIR Spectrum difference of protein among Candida species [24

MALDI-TOF–MS Spectrum difference of protein among Candida species 24

PNA FISH Synthetic DNA mimics to hybridize with complementary DNA targets [24

RFLP Restriction digestion and hybridization with probe 48–72

Microsattelite

typing

Based on PCR amplification 24

Multilocus typing Based on PCR amplification 24

RAPD Based on PCR amplification \12
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workers reported correct identification of 163/167 (97.6 %)

isolates by MALDI-TOF-MS (Herendael et al. 2012).

There are certain limitations for every diagnostic tech-

nique and MALDI-TOF-MS is no exception. The major

limitation with MALDI-TOF-MS is the requirement of a

pre-culture for successful analysis of patient samples.

Another limitation includes inconsistencies between bio-

chemical, molecular, and MALDI-TOF-MS based differ-

entiation results. Since, in MALDI-TOF-MS technique,

pathogen identification is based on the analysis of ribo-

somal protein spectra, species that do not differ adequately

in their ribosomal protein sequences gives inconclusive or

false identification. One such example, though not from

Candida, is Shigella spp. and Escherichia coli or Strepto-

coccus pneumoniae (pneumococcus) and members of the

Streptococcus oralis/mitis group, which cannot be distin-

guished by MALDI-TOF-MS. Due to these shortcomings

in this technique, other alternative method such as classical

biochemical tests, antigen detection, or DNA based

molecular methods are required. Further, the MALDI-TOF

system has the inability to detect pathogens directly from

patient material with the exception of urine. Various

attempts are made to directly analyzed patient material

from other sources, such as cerebrospinal fluid and blood.

However, no working protocols have been published to

date.

(b) Fourier transform infrared spectroscopy.

Fourier transform infrared spectroscopy (FTIR) character-

izes the chemical composition of very complex biological

systems such as microorganisms and provides highly spe-

cific spectroscopic fingerprints. This technique represents

an analytical, non-destructive and dynamic method to

investigate a population of whole cells with only little

biomass (Naumann et al. 1991; Sandt et al. 2003). It per-

mits identification and characterization of microbial cells at

both species and sub-species level. The FTIR technique is

sensitive that requires very little sample: ng–lg, relatively

fast and simple to use. Little or no sample preparation is

required for spectral acquisition. The Candida cells

remains intact during analysis. The FTIR spectra provide

information about cell composition and quantify the num-

ber or amount of functional groups present in a sample.

Samples can be tested in the form of liquid, gas, powder, or

film. Interestingly, Candida samples can be discriminated

on the basis of their physiological state such as live, dead,

injured, and treated. There are few limitations with this

technique such as complex samples like mixture of Can-

dida species produce overlapping spectra, which may lead

to misinterpretation of results. Hence, a purification step is

required. Therefore, a complete library of spectra for each

type of Candida is required to facilitate detection. More-

over, culture medium, growth time, and growth

temperature may cause variations in spectra. Presence of

water in a sample may influence the bands at certain spe-

cific wave-number (Mariey et al. 2001; Burgula et al.

2007). The FTIR spectroscopy has been used to investigate

differences in structure and content of components of the

cell wall such as b-glucans, mannoproteins, and lipids of

different Candida species (Dominique Toubas 2007; Ess-

endoubi et al. 2005) .

PNA FISH Peptide nucleic acid (PNA) probes, developed

in the early 1990s (Egholm et al. 1993; Nielsen et al. 1994)

are synthetic DNA mimics where negatively charged

sugar-phosphate backbone of DNA is replaced by an

achiral, neutral polyamide backbone formed by repetitive

units of N-(2-aminoethyl) glycine. Individual nucleotide

bases are attached to each of the units providing a molec-

ular design that enables PNA to hybridize to complemen-

tary nucleic acid targets according to the Watson and Crick

base pairing rules. The synthetic backbone provides PNA

probes with exceptional hybridization features, such as

more rapid and stronger binding to complementary targets

(Egholm et al. 1993). PNA is not degraded by nucleases or

proteases (Demidov et al. 1994) and due to its relative

hydrophobic character it penetrates the cell wall of yeast

following fixation (Rigby et al. 2002; Stender et al. 2001).

These chemical characteristics of PNA have been explored

in a variety of research and diagnostic applications, such as

point mutation analysis (Igloi 1999), chromosome analysis

(Taneja et al. 2001), virology (Just et al. 1998), mycology

(Stender et al. 2001), and bacteriology (Thisted et al.

1999). PNA probes can be combined in standard fluores-

cent in situ hybridization (FISH) format making it a pow-

erful diagnostic tool. In 2004, FDA has approved PNA

FISH technique for the identification of C. albicans directly

from blood culture bottles in vitro (Alexander and Pfaller

2006). The probes utilized by PNA FISH technique are

superior to conventional nucleic acid probes in their better

binding properties and stability. PNA-DNA hybridization

is affected by base mismatches and PNA can maintain

sequence discrimination up to the level of a single nucle-

otide mismatch. On the other hand, base mismatches are

less effective for corresponding DNA–DNA hybridization.

These characteristics give PNA FISH a much higher

specificity, making it an ideal tool to differentiate C.

albicans in vitro (Egholm et al. 1993; Ray and Nordén

2000). Since this new detection technique targets highly

conserved species-specific sequences in the abundant 26S

rRNA of living C. albicans, individual cells can be

detected directly without the need for amplification

(Shepard et al. 2008). The PNA FISH is performed on

microscope slides of direct blood smears and analyzed by

fluorescence microscopy. Forrest and co-workers observed

that PNA FISH significantly reduced the median time
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required for the identification of C. albicans to 9.5 h (range

3–17 h), compared to the standard culture median time of

44 h (range 36–92 h), while the median time for the final

identification of Candida species other than C. albicans by

culture was even longer (61 h; range 36–124 h). However,

the major limitation of the PNA FISH test is that it has not

yet been validated with specimens other than blood.

Moreover, only C. albicans specific probe is currently

available. Development of probes for other Candida spe-

cies will lead to greater clinical effectiveness of PNA FISH

technique (Forrest et al. 2006; Chen et al. 2011).

DNA based techniques

The most widely used techniques among DNA based

methods are the restriction fragment length polymorphism

(RFLP), randomly amplified polymorphic DNA (RAPD)

analysis, Multi locus sequence typing and Microsatellite

typing. Compared to blood cultures and phenotypic meth-

ods, DNA based techniques have been adopted by several

microbiological laboratories for rapid and objective iden-

tification of C. albicans. The sensitivity of a DNA based

assay is dependent on sample preparation, primer and DNA

target selection, extraction of DNA, and amplification

effectiveness (Bretagne and Costa 2005). The success of

amplification method is heavily dependent on the selection

of targeted nucleic acid. Target DNA can either be

obtained from databases using species-specific information

or can be arbitrarily selected from the fungal genome.

Nevertheless, species-specific sequences always give rise

to better outcomes than arbitrary sequences. Highly con-

served sequences of 5.8S, 18S and 28S ribosomal RNA

genes are appropriate to differentiate Candida species. The

internal transcribed spacer regions (ITS) located between

these genes are very promising for the molecular identifi-

cation of C. albicans, since they contain areas of high

conservation as well as areas of high variability. Among

them, ITS1 and ITS2 are primarily used, and the combi-

nation of these two length polymorphisms may yield better

results than either one alone (Chen et al. 2001).

Microsatellite typing

Simple Sequence Repeats (SSRs) or microsatellites are

tandemly repeated motifs of 1–6 bases found in all pro-

karyotic and eukaryotic genomes. They are present in both

coding and non coding regions and are usually character-

ized by a high degree of length polymorphism (Hartl and

Clark 1997; van Belkum 1999; Zane et al. 2002). Though

the evolutionary mechanism of microsatellite still remains

uncertain, even then microsatellites have been considered

efficient genetic markers because of their high variability.

The high reproducibility and stability of microsatellite

markers have been reported by various researchers in their

epidemiological studies involving the opportunistic patho-

gen C. albicans (van Belkum 1999; Zane et al. 2002).

However, only a few polymorphic microsatellite loci have

been identified in the genome of C. albicans located mostly

next to or within coding regions and exhibiting a high

discriminatory power (Botterel et al. 2001; Bretagne et al.

1997; Garcia-Hermoso et al. 2007). The microsatellites

found in non-coding regions exhibits greater degree of

polymorphism than those found within coding regions.

Unfortunately, there are only few studies for analysis of

these regions in C. albicans (Lott and Effat 2001; Lunel

et al. 1998; Sampaio et al. 2003). Several researchers have

exploited this technique and its different variants such as

Multi-locus microsatellite typing (MLMT) for typing dif-

ferent strains from the same species of Candida (Chávez-

Galarza et al. 2010; Sampaio et al. 2003; Ge et al. 2012).

Multi locus sequence typing

Multi locus sequence typing (MLST) directly measures the

DNA sequence variations in a set of housekeeping genes

and characterizes strains by their unique allelic profiles.

The technique involves PCR amplification followed by

DNA sequencing. Nucleotide differences between strains

can be checked at a variable number of genes depending on

the degree of discrimination desired. This technique has

been shown to be a highly discriminatory and reproducible

method for unambiguous specific strain characterization of

C. albicans (Bougnoux et al. 2002; Bougnoux et al. 2006;

Odds 2010). This method has now been successfully

applied to study epidemiology, population genetics, and

molecular phylogeny for differentiation of strains of Can-

dida tropicalis and Candida albicans. MLST data for C.

albicans strains are available in a public database that

provides an indispensable resource to evaluate the world-

wide diversity of C. albicans and the relationships of iso-

lates identified at various locations (Odds et al. 2007;

Tavanti et al. 2005).

Randomly Amplified Polymorphic DNA

The Randomly Amplified Polymorphic DNA (RAPD)

assay uses a single or a pair-wise combination of primers,

typically 9–10 nucleotides in length, to amplify target

genomic DNA by the PCR. Fragments of DNA are gen-

erated by PCR amplification if the target sites for the pri-

mer happen to occur within approximately 5 kb of each

other on opposite DNA strands. Since arbitrary sequence

primers are used, RAPD fingerprints are relatively easy and

fast to obtain. Furthermore, no prior knowledge is required

for the DNA to be analyzed. This approach has been used

by several researchers to type and identify Candida
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species. Melo 1998 observed RAPD results for identifica-

tion of C. albicans, C. tropicalis, C. parapsilosis, C.

glabrata and C. krusei were 100 % consistent with the

results obtained by conventional diagnostic methods (Melo

1998). Melting curve of random amplified polymorphic

DNA (McRAPD) has been used to identify Candida lusi-

taniae isolates (Hamal et al. 2011). Xu and his colleagues

have successfully genotyped 30 Candida albicans isolates

through RAPD method by employing OPE-03 primer (Xu

et al. 2012). In a study, 38 clinical isolates selected which

were previously identified as C. parapsilosis and were

subjected to the RAPD analysis using CA2 primer. Fol-

lowing RAPD analysis, 4 were re-identified as C. me-

tapsilosis and 5 as C. orthopsilosis (del Pilar Vercher et al.

2011). RAPD method using primers CA1 and CA2

exhibited the discriminatory power by discriminating 22

genotypes for Candida albicans with CA1 oligonucleotides

and 19 genotypes with CA2 primer but when both primers

CA1 and CA2 were combined, 17 genotypes were obtained

for C. glabrata (Noumi et al. 2009). It is also suggested that

RAPD may be employed to establish the relationship

between genotype and drug susceptibility of C. albicans

simultaneously (Jain et al. 2001; Xu et al. 2012).

Restriction fragment length polymorphism

Restriction fragment length polymorphism (RFLP) is a

type of polymorphism that results from variation in the

DNA sequence recognized by restriction enzymes. These

are bacterial enzymes used to cut DNA molecules at known

locations. RFLPs are used as markers on genetic maps.

This technique has been used by several researchers to type

and identify Candida species by targeting different genes

or probes such as CARE2, 27A, Ca3 or internal transcribed

spacers (ITS1 and ITS2), 5.8S rRNA gene, 26S D1/D2

domain, etc. with different sets of restriction enzymes. Ca3

is a moderately repetitive DNA fragment of Candida

albicans genome. Digestion of Ca3 DNA probes generates

a pattern of 15–25 bands of various intensities depending

on the restriction enzyme used. Fingerprinting by Ca3

probe has proven effective in a number of epidemiological

studies involving significant numbers of strains (Schmid

et al. 1990, 1992, 1995). Another probe, CARE2 is 1.06 kb

moderately repetitive fragment of DNA, which has been

widely utilized for the identification of Candida species.

Reef et al. (1998) analyzed 49 C. albicans isolates to

determine the mode of acquisition of infection in hospi-

talized patients by restriction fragment length polymor-

phism analysis using genomic blots hybridized with the

CARE-2 probe (Reef et al. 1998). But these methods suf-

fers with certain limitations such as they are more expen-

sive and time consuming as well as needs skilled workers

trained in such techniques to interpret the data.

Nucleic acid analysis of Internal transcribed spacer (ITS)

region of rRNA

Although, several molecular approaches have been devel-

oped to provide more rapid and accurate identification of

Candida species as compared to traditional phenotypic

methods, but the internal transcribed spacer 1 and 2 (ITS1

and ITS2) regions of the rRNA gene have gained upper

hand for typing Candida species in a variety of approaches.

These methods include PCR (Li et al. 2003; Luo and

Mitchell 2002), ITS fragment length polymorphism (Chen

et al. 2000, 2001; Turenne et al. 1999), restriction fragment

length polymorphism (Frutos et al. 2004; Majoros et al.

2003; Trost et al. 2004), DNA probe hybridization and

DNA sequencing (Coignard et al. 2004; Elie et al. 1998;

Lindsley et al. 2001; Martin et al. 2000; Wahyuningsih

et al. 2000b). Park and his colleagues has developed a

molecular probe for rapid identification of C. dubliniensis

as well as C. albicans by analyzing ITS2 region of rRNA

genes from a reference Candida strains (Park et al. 2000).

Frutos and co-workers has reported correct identification of

Candida species by restriction analysis of the ribosomal

region spanning ITS1 and ITS2 and the 5.8S rRNA gene

(Frutos et al. 2004). Interestingly, one of the studies

showed species differentiation among Candida glabrata,

C. nivariensis and C. bracarensis on the basis of fragment

length polymorphism of ITS1 and ITS2 (Mirhendi et al.

2011). Among several methods, ITS sequence analysis has

been proven to be an accurate method for species identi-

fication because of its simplicity to perform due to being

fully automated as well as nucleic acid interpretation is

very straightforward and does not require very skilled

expertise. The ITS1 and ITS2 regions of Candida species

possesses enough nucleic acid sequence diversity which

facilitates species-level identification of organisms by

enabling targeted DNA sequencing of distinct regions

within the rRNA gene complex (Iwen et al. 2002; Lott et al.

1998; Chen et al. 2000; Mercure et al. 1993). Since the

ITS1 and ITS2 regions are highly informative and their

flanking ribosomal genes are highly conserved, they are

desirable targets for PCR–based amplification coupled with

either DNA sequencing or species-specific hybridization

probes (Einsele et al. 1997; Elie et al. 1998; Gharizadeh

et al. 2004). Therefore, a practical approach for accurate

and timely identification of Candida species includes DNA

sequencing of the ITS1 or ITS2 regions. The TS1 and ITS2

have been used by several investigators for the purpose of

fungal identification due to the sufficient extent of

sequence variation in specific non-coding sequences

(Hinrikson et al. 2005; Leaw et al. 2006; Schabereiter-

Gurtner et al. 2007). In a study, Bayonton and coworkers

were able to identify all 60 Candida isolates correctly at

species-level through DNA pyrosequencing of ITS2 region
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and sequencing interpretations were agreed in all cases

with results of biochemical and morphologic testing. Dif-

ferent Candida species were identified, such as C albicans,

C dubliniensis, C glabrata, C guilliermondii, C krusei, C

lusitaniae, C parapsilosis, and C tropicalis (Boyanton et al.

2008). In another study, the ITS1 and ITS2 regions were

sequenced from a large collection of 373 medically rele-

vant yeast isolates (including Candida species), and the

ITS2 region was the DNA target yielding 99.7 % correct

species identification (Leaw et al. 2006). Although ITS

sequencing holds a great promise for the correct identifi-

cation of medically known important yeast species whose

sequence database is available to compare with the sub-

jected sequence in the medical diagnostic laboratory. But

recently there are reports of the use of polymerase chain

reaction–restricted fragment length polymorphism (PCR–

RFLP) as a rapid, easy and cost-effective method for the

identification of Candida species from blood isolates of

ICU patients (Vijayakumar et al. 2012). In this method the

ITS1-5.8S-ITS2 rDNA region from genomic DNA of

Candida species were amplified by PCR. RFLP was per-

formed for the amplified products using the Msp I restric-

tion enzyme. Vijayakumar et al. (2012), have reported

correct identification of the all isolates included in their

study to the species level such as C.tropicalis, C. albicans,

C. parapsilosis, C. glabrata, C. kruse from blood isolates

of ICU patients (Vijayakumar et al. 2012). As a matter of

fact, PCR–RFLP has been found to be a rapid and trust-

worthy method to speciate Candida isolates as evident by

other studies. In a study by Shokohi and colleagues Can-

dida species have been identified in cancer patients by

PCR–RFLP using two restriction enzymes (Bln I, Msp I)

(Shokohi et al. 2010). In another similar study, researchers

have developed one-enzyme PCR–RFLP assay for identi-

fication of six medically important Candida species

(Mirhendi et al. 2011). Interestingly, Okhravi and

coworkers has shown PCR–RFLP analysis to speciate

Candida isolates causing intraocular infections (Okhravi

et al. 1998). Hence, this method seems to be very robust in

terms of their rapidness, simplicity and cost-effectiveness

and thus can be utilized in the routine laboratory diag-

nostics for the identification of Candida isolates which

often posed significant challenges for the clinicians to

prescribe appropriate antifungal therapy base on correct

identification to manage the candidemia patients whose

lives are always at a great risk.

Conclusion

Management of Candida infection remains severely ham-

pered by delay in diagnosis. The conventional (classical)

methods routinely used in hospital setup to identify

Candida species are not much accurate as compared to

molecular methods. Moreover, they are time consuming,

usually take 2–5 days, and sometimes misdiagnose the

species. In this article, we have focused comprehensibly on

the techniques available so far in the literature regarding

identification of Candida isolates. We have made an

attempt to analyze the best possible and more trustworthy

techniques and tools as an alternative choice for identifi-

cation of clinical Candida isolates. Here, we focused to

address a broad range of molecular techniques that have

been used for identification and typing Candida species

including DNA and non-DNA based methods. DNA-based

methods generate unambiguous and highly reproducible

typing data such as microsatellite length polymorphism and

multi-locus sequence typing. In the review, molecular

methods used for Candida species identification as well as

strain typing are discussed in detail. The advantages and

limitations of these methods are also discussed with regard

to their discriminatory power, reproducibility, cost effec-

tiveness, and ease of performance. Conventional identifi-

cation of yeasts can be considered adequate for identifying

species commonly encountered in clinical specimens,

though it is time consuming and not very accurate espe-

cially with closely related homologous species and require

expertise that is more technical. Molecular identification

methods may be more expensive, but are time efficient and

more accurate. Therefore, early and accurate diagnosis of

Candida infection by DNA-fingerprinting method is in-

dispensible for timely intervention with appropriate anti-

fungal therapy. The polymerase chain reaction can be

adopted for fingerprinting Candida by using random

primers based on the analysis of Candida genome. RAPD

analysis may also be a promising tool for Candida typing

as well as for strain discrimination especially to evaluate

the nosocomial infection. This method has the advantage

that no prior sequence information is required, and par-

ticularly promising because of their simplicity, specificity,

sensitivity, and rapid screening. In coming years, RAPD

may also be proved promising tool in determining the

relationship between genotype and drug susceptibility of

Candida species simultaneously. Unfortunately, there is

lack of research work focused on establishing the RAPD

tools for simultaneous discrimination of resistant isolates

from the sensitive ones along with species identification.

There have been extensive reports of utilizing the internal

transcribed spacer 1 and 2 (ITS1 and ITS2) regions of the

rRNA gene for detection of Candida species in a variety of

method. Among these molecular methods, the feasibility of

using ITS sequencing for identification of medically

important yeasts has been extensively carried out and has

been proven to be an accurate method for species identi-

fication. However, ITS2 sequence seems to be more species

specific than the ITS1 sequence, and almost all clinically
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relevant species could be identified by using the ITS2

region alone. Recently, there are numerous reports of the

use of polymerase chain reaction–restricted fragment

length polymorphism (PCR–RFLP) of ITS rDNA as a

rapid, easy, and cost-effective method for the rapid iden-

tification of Candida species.
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Einsele H, Hebart H, Roller G, Löffler J, Rothenhofer I, Müller CA,

Bowden RA, Burik J, Engelhard D, Kanz L, Schumacher U

(1997) Detection and identification of fungal pathogens in blood

by using molecular probes. J Clin Microbiol 35(6):1353–1360

Elie CM, Lott TJ, Reiss E, Morrison CJ (1998) Rapid identification of

candida species with species-specific DNA probes. J Clin

Microbiol 36(11):3260–3265

Essendoubi M, Toubas D, Bouzaggou M, Pinon J-M, Manfait M,

Sockalingum GD (2005) Rapid identification of Candida species

by FT-IR microspectroscopy. Biochim Biophys Acta 1724(3):

239–247. doi:10.1016/j.bbagen.2005.04.019

Falagas ME, Roussos N, Vardakas KZ (2010) Relative frequency of

albicans and the various non-albicans Candida spp. among

candidemia isolates from inpatients in various parts of the world:

a systematic review. Int J Infect Dis 14(11):e954–e966. doi:10.

1016/j.ijid.2010.04.006

Fenn JP, Segal H, Blevins L, Fawson S, Newcomb-Gayman P, Carroll

KC (1996) Comparison of the Murex, Candida albicans CA50

test with germ tube production for identification of C. albicans.

Diagn Microbiol Infect Dis 24(1):31–35

Fenselau C, Demirev PA (2001) Characterization of intact microor-

ganisms by MALDI mass spectrometry. Mass Spectrom Rev

20(4):157–171. doi:10.1002/mas.10004

Ferreira AV, Prado CG, Carvalho RR, Dias KST, Dias ALT (2013)
Candida albicans and Non-C. albicans Candida Species: com-

parison of biofilm production and metabolic activity in biofilms,

and putative virulence properties of isolates from hospital

environments and infections. Mycopathologia 175(3–4):265–

272. doi:10.1007/s11046-013-9638-z

Fluit AC, Jones ME, Schmitz F-J, Acar J, Gupta R, Verhoef J (2000)

Antimicrobial susceptibility and frequency of occurrence of

clinical blood isolates in Europe from the SENTRY antimicro-

bial surveillance program, 1997 and 1998. Clin Infect Dis 30(3):

454–460. doi:10.1086/313710

Forrest GN, Mankes K, Jabra-Rizk MA, Weekes E, Johnson JK,

Lincalis DP, Venezia RA (2006) Peptide nucleic acid fluores-

cence in situ hybridization-based identification of Candida

albicans and its impact on mortality and antifungal therapy

costs. J Clin Microbiol 44(9):3381–3383. doi:10.1128/jcm.

00751-06

Frutos RdL, Fernández MT, Querol A (2004) Identification of species

of the genus Candida by analysis of the and the two ribosomal

internal transcribed spacers. Antonie Van Leeuwenhoek

85(3):175–185. doi:10.1023/B:ANTO.0000020154.56649.0f

Garcia-Hermoso D, Cabaret O, Lecellier G, Desnos-Ollivier M,

Hoinard D, Raoux D, Costa J-M, Dromer F, Bretagne S (2007)

Comparison of microsatellite length polymorphism and multilo-

cus sequence typing for DNA-Based typing of Candida albicans.

J Clin Microbiol 45(12):3958–3963. doi:10.1128/jcm.01261-07

Ge S-H, Xie J, Xu J, Li J, Li D-M, Zong L–L, Zheng Y-C, Bai F-Y

(2012) Prevalence of specific and phylogenetically closely

related genotypes in the population of Candida albicans

associated with genital candidiasis in China. Fungal Genet Biol

49(1):86–93. doi:10.1016/j.fgb.2011.10.006
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