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Abstract Allergy and anaphylaxis are inflammatory dis-

orders caused by immune reactions mainly induced by

immunoglobulin-E that signal through the high-affinity

FceRI receptor to release the inflammatory mediators from

innate immune cells. The FceRI/mast cell axis is potently

involved in triggering various intracellular signaling mol-

ecules to induce calcium release from the internal stores,

induction of transcription factors such as NF-kB, secretion

of various cytokines as well as lipid mediators, and

degranulation, resulting in the induction of allergy and

anaphylaxis. In this review, we discuss various cellular

and molecular mechanisms triggered through FceRI/mast

cell axis in allergy and anaphylaxis with a special emphasis

on the functional genomics paradigm.
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Introduction

The term allergy was first used in 1906 by Dr. Von Pirquet,

an Austrian physician, to define an Immunoglobulin E

(IgE)-mediated or type I hypersensitivity reaction triggered

by allergens, which are antigens that bring out an allergic

reaction [1]. In 1902, Richet and Portier [2] found that a

dog tolerated the administration of sea anemone toxin

initially; however, it died within few minutes of adminis-

tering the second dose many weeks later. They coined the

term anaphylaxis, which in Greek, ana means against;

phylax means guard or protection. Richet was later awar-

ded the Nobel Prize in Medicine and Physiology in 1913

for his work in anaphylaxis. At present, anaphylaxis refers

to a life-threatening IgE-mediated allergic condition char-

acterized by multiple organ involvement and quick onset.

Drugs, insect stings, latex, and foods are the common

allergens that trigger anaphylactic reactions. Very rarely,

death due to anaphylaxis typically results from acute

respiratory or heart failure.

Mast cells play a major effector role in the initiation as

well as the propagation of various inflammatory disorders

such as asthma, psoriasis, arthritis, etc. [3] and are the

central effector cells in the mediation of allergy and ana-

phylaxis [4]. IgE-dependent or IgE-independent mast cell

mediated response leads to the activation, synthesis and

release of inflammatory mediators in allergy, and anaphy-

laxis [5–8]. In the past decade, scientists have been

applying the microarray technology to explore the funda-

mental genetic causes of inflammatory conditions [9–13].
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Such transcriptomic profiling immensely helps in our

critical understanding of the global effects driven by the

physiological ‘‘passive sensitization’’ or ‘‘active stimula-

tion’’ of human mast cells to design novel therapeutic

strategies to ameliorate and effectively manage both

allergy and anaphylaxis.

Immunoglobulins and IgE

Defense against foreign bodies and microorganisms

requires the interaction between innate immunity and

acquired immunity. Generally, innate and acquired

responses are regulated by humoral and cell-mediated

responses. The humoral responses are mediated by immu-

noglobulins or antibodies, which are secreted by B

lymphocytes. The immunoglobulins contain a variable Fab

portion in the light chains and a constant Fc portion in the

heavy chains. The Fab region interacts with a specific

antigen and the Fc region binds to effector molecules such

as Fc receptors and complement proteins. The ability of

immunoglobulins to distinguish between a variety of anti-

gens is due to the result of somatic recombination events,

which result in the alteration of their variable regions.

Based on the constant Fc region, immunoglobulins are

subdivided into five major classes, which includes: IgG,

IgM, IgA, IgE, and IgD. The effector molecules, which

distinguish these immunoglobulins, are primarily Fc

receptors, transport receptors and complement [14]. Every

major immunoglobulin class has its own specific Fc

receptor (FcR): FcaR binds IgA, FceR binds IgE, FccR

binds IgG, FcdR binds IgD, and FclR binds IgM [15–18].

IgE receptors and nomenclature

FceRI-mediated reactions are the most prevalent form of

immune-related diseases among humans. FceRs play core

function in the development of allergic inflammation.

There are two types of IgE receptors: the high-affinity

receptor (FceRI) and the low-affinity IgE receptor (FceRII;

CD23) [19]. FceRI is expressed on mast cells and basophils

and on antigen-presenting cells whereas, FceRII, a Ca-

dependent lectin, is expressed on the surface of B cells, as

well as other hematopoietic cells including Langerhans

cells, macrophages, monocytes, eosinophils, and platelets.

CD23, existing as CD23a and CD23b, has been associated

with facilitating antigen presentation; it also negatively

regulates IgE synthesis; and transports IgE-antigen com-

plexes across epithelium [20]. Both IgE and IL-4 are shown

to upregulate expression of CD23 [21].

Unbound FceRI on the mast cell surface has a half-life

of 24 h in vitro. On the other hand, FceRI bound to IgE

seem to be expressed throughout the life of the cell [22].

Aggregation of FceRI by multivalent antigen results in

several downstream intracellular signaling events linked

with mast cell or basophil activation [23, 24]. When an

allergen interacts with IgE that attached to mast cells or

basophils by the a chain of the high-affinity IgE receptor, it

will result in the activation of mast cells and release of both

stored, as well as newly synthesized mediators (FceRIa)

[25]. Release of these mediators results in local vasodila-

tion, smooth muscle contraction, increased vascular

permeability, and the initiation of inflammation. Such

hypersensitivity reactions result in clinical manifestations

including allergic rhinitis, atopic dermatitis, and anaphy-

laxis. In antigen-presenting cells (APCs), these receptors

facilitate the IgE-mediated trapping and introduction of

allergen to T cells [26, 27]. Eosinophils also have FceRIa,

but apart from activation and degranulation, it may aid in

regulating local levels of IgE [28].

FceRI: structure

FceRI has a Kd of over 10-10 M binding affinity with

monomeric IgE, which is the strongest when compared to

the rest of the other Fc receptors for their ligands [29]. The

classical form of FceRI is tetrameric (abc2): constitutively

expressed on mast cells and basophils in humans, while the

trimeric form (ac2) is present on the APCs such as mono-

cytes, dendritic cells and Langerhans cells. The classical

form consists of an IgE-binding a chain, a b chain, and a

homodimeric c chain. The b chain in FceRI enhances

receptor maturation [30] and the c-homodimer enhances

signal transduction [31]. Studies show that even in the

absence of a b chain, the trimeric form of FceRI possesses

complete function [25, 32]. Both the b and c chains are

required for the efficient cellular expression of the FceRI-a-

chain [33]. In addition, studies have shown that ac2 com-

plexes were translocated to the periphery of the cell,

meaning that the human c chain by itself is sufficient to

fight against endoplasmic reticulum retention signals in the

a chain [33].

FceRI effector cells: mast cells and basophils

Mast cells have been considered as the most vital effector

cell type for allergic conditions including, to a lesser

extent, basophils and neutrophils [34, 35]. The progenitors

for mast cells migrate into the peripheral tissue and

undergo differentiation to become mature mast cells in situ.

They are mainly located within blood vessels and the

epithelial lining. Mast cells of hematopoietic origin

respond to signals of both innate and acquired immune

response with immediate and delayed release of inflam-

matory mediators. Based on their site of location and

granule contents, mast cells are divided into connective
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tissue mast cells and mucosal mast cells. Human connec-

tive tissue mast cells are observed in the skin and intestinal

sub-mucosa, and their granules comprises tryptase and

chymase. Studies have also shown that the granules of

tryptase were found in the mast cells located in intestinal

mucosa and alveoli [36]. Mast cells are central to the

pathogenesis of type I hypersensitivity and mastocytosis.

Mast cells are also entailed with self-responses to patho-

gens, autoimmune diseases, and fibrosis. Eicosanoids and

cytokines are synthesized by mast cells and contribute to

inflammation. Mast cells can be specifically stained with

basic dyes such as toluidine blue [37].

Basophils also express high levels of FceRI. They are

derived from CD34? hematopoietic progenitor cells and

play a vital role in the host defense against parasitic

infections, as well as mediating type I hypersensitivity

reactions. Basophils are present in blood as mature forms.

However, they can be recruited to the site of inflammation

where antigens are located. Cytoplasmic granules in the

basophils comprise pro-inflammatory mediators. Because

basophils share structural and functional similarities with

mast cells, they trigger comparable effector responses as

observed in mast cells upon aggregation of FceRI. Apart

from basophils and mast cells, FceRI is also found to be

expressed in low levels on eosinophils, monocytes, plate-

lets, dendritic cells, and Langerhans cells [25].

Mast cells: morphology

Mast cells are up to 20 lm in diameter, are ovoid or

irregularly elongated in shape [38]. Mast cells contain

ample metachromatic cytoplasmic granules and they can be

stained because of large sulfated proteoglycans in the

granules. Tryptase staining detects all mast cell types and is

the principal method for detecting tissue mast cells. The

granule contents are crystalline under the electron micro-

scope, but turn formless upon activation and before

degranulation. Mast cells express several receptors

including IL-3R, IL-4R, IL-5R, IL-9R, IL-10R, GM-CSFR,

IFN-cR, C3a and C5a receptors, CCR3, CCR5, CXCR2,

CXCR4, nerve growth factor receptor, Toll-like receptors

(TLRs), and ST2 [39, 40].

FceRI-mediated signal transduction

Interpreting the intracellular signaling cascade mediated by

mast cell activation has major therapeutic implications for

inflammatory conditions. FceRI aggregation and mast cell

activation has long been known to be an important incident

in allergic conditions [41–43]. Numerous studies have

focused on the intracellular signaling cascade mediated by

mast cell activation and release of pro-inflammatory

mediators [25, 44, 45]. Figure 1 shows the schematic

representation of FceRI-mediated intracellular signaling

events. Following cross-linking of FceRI, intracellular

signal transduction is initiated by a tyrosine kinase, named

Lyn, which is constitutively linked with the FceRI receptor

[46, 47]. Subsequently, Lyn phosphorylates the immuno-

receptor tyrosine-based activation motif (ITAM) of the

subunits of the FceRI, leading to the activation and binding

of protein tyrosine kinases (PTK) with Src homology

domain 2 (SH2). One such PTK is spleen tyrosine kinase

(Syk) [48]. An activated Syk subsequently leads to further

tyrosine phosphorylations of several ‘‘adapter’’ proteins

including that of linker for activation of T cells (LAT) as

well as phosphorylation of phospholipase C c (PLC-c).

LAT phosphorylation leads to the activation of JNK and

ERK; and the synthesis and release of cytokines and ara-

chidonic acid (AA) metabolism result in target organs to

cause the clinical syndrome of anaphylaxis [49]. On the

other hand, phosphorylated PLC-c yields diacylglycerol

(DAG) and inositol-1,4,5-triphosphate (IP3) from mem-

brane phospholipids. DAG successively activates protein

kinase C (PKC), which results in the exocytosis of stored

granules and cytokine release.

Furthermore, Bruton’s tyrosine kinase (Btk) is mem-

brane targeted and activated by the binding of

phosphatidylInositol-3, 4, 5-trisphosphate (PIP3) moiety to

its Pleckstrin-Homology (PH) domain. Btk then phos-

phorylates and activates PLC-c [50]. On the other hand, the

induction of PI3 K by Syk results in the production of

micromolar levels of PIP2 and PIP3. Besides, PI3 K is

essential for the induction of intracellular Ca2? release as

well as mobilization across plasma membranes. Both

PI3 K and PLCc act synergistically on the common sub-

strate PIP2 to produce PIP3 and IP3, respectively. The IP3

activates Ca2? channels at different cellular compartments,

primarily in the endoplasmic reticulum [ER], to release

Ca2? required for optimal physiological responses. As a

result, the depletion of Ca2? in the internal stores causes

the influx of Ca2? from the extracellular space through the

activation of a type of store operated Ca2? channel (SOCC)

termed as Ca2? release activated Ca2? channel (ICRAC) [50,

51, 52].

Studies have shown that cross-linking of FceRI in rat

basophilic leukemia cells activates sphingosine kinase,

which produces sphingosine-1-phosphate (S1P). S1P is a

potent sphingolipid mediator, and acts as a second mes-

senger in releasing intracellular calcium from internal

stores. This process is carried through the inositol 1,4,5-

triphosphate (IP3)-independent pathway [53]. Studies

report that aggregation of FceRI in human bone marrow-

derived mast cells resulted in the activation of PLD1,

leading to downstream activation of SPHK1 [54]. This

process results in the initial release of intracellular calcium

as well as degranulation of mast cell(s). Another interesting
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study reports that blocking SPHK activity forbids FceRI-

mediated internalization of S1P receptors and significantly

reduces degranulation [55]. Also, tyrosine kinase Lyn has

been shown to be associated with recruitment and activa-

tion of SPHK to FceRI [56].

FceRI: regulation

In 1978, Malveaux et al. [57] reported for the first time that

the presence of circulating monomeric IgE could raise

FceRI cell surface expression. Many studies have been

published in the 1990s showing IgE drives FceRI expres-

sion in both human and murine mast cells, as well as

basophils [58–60]. These reports have helped in under-

standing the mechanisms of IgE sensitization, during which

FceRI is over-expressed at cell surface, and FceRIs bound

to IgE are activated when re-exposed to allergens. FceRI

expression as well as mast cell activation upon cross-

linking IgE-bound FceRI with polyvalent antigen lead to

degranulation [34, 61]. Such IgE-mediated mast cell

recognition of multivalent antigen and the subsequent

intracellular signaling events are well studied in various

inflammatory models [62–65].

IgE-mediated FceRI expression was also observed in

monocytes [66, 67]. However, monocytes do not express

FceRIb and are shown to express low levels of FceRI.

FceRIb appears to be playing a key role in the receptor

expression and has also been shown to be associated with

atopic diseases [68]. A single-nucleotide polymorphism

(SNP) in the FceRIb gene has been connected to higher IgE

serum levels and result in the increased FceRI surface

expression [69]. In IgE-mediated FceRI regulation, over-

expression of receptor is caused by the interaction of IgE

with the receptor [70]. The total FceRIa content increases

with surface receptor up-regulation. On the other hand, the

removal of IgE results in the reduction in the receptor

expression, as well as FceRIa content [71]. Though the

actual mechanism still remains unclear, IgE-FceRI binding

enhances the surface expression of FceRI [72]. Reports

show that FceRI receptor expression in mast cells are

Fig. 1 Schematic representation of FceRI-mediated intracellular

signaling events in mast cells and basophils. The allergen cross

linking of FceRI receptors initiate key cellular signaling events such

as the activation of PLCc, PKCs, SPHKs, PI3Ks, etc. An important

role for these major pathways in immune cell function is predicted

based on their ability to regulate the transcriptional activity of

cytokine genes, calcium release from the internal stores which is

essential for the degranulation and further intracellular mediation of

signaling processes, and the production of lipid mediators such as

prostaglandins and leukotrienes. The specific blocking of these key

intracellular signaling molecules such as PLCc, PKCs, SPHKs, S1P,

PI3Ks, etc., by specific chemical inhibitors or siRNAs, or therapeutic

Intrabodies would certainly be of immense use in the effective

management of allergy and anaphylaxis in the near future
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mediated by IL-4 [60, 73]. On the whole, the factors that

mainly affect the expression of FceRI are the expression of

FceRIb and the serum levels of IgE [60, 73].

FceRI: biological functions

FceRI triggers IgE-mediated activation and degranulation

of mast cells and basophils. Apart from mediating type I

hypersensitivity reactions, FceRI plays other biological

roles, too. First of all, FceRI and IgE are vital for the self-

defense against parasitic infections [74]. In vivo studies

showed that mice lacking a chain of FceRI were also

protected against parasitic infections like the normal mice.

However, it is not very clear why and how the absence of

functional FceRI/mast cell axis protects these mice against

parasitic infections [74]. Interestingly, very recent study

has partially answered the above statement by showing that

the IgG/neutrophil axis is also key for the triggering of

passive and active systemic anaphylactic shock in mice

[35].

The other biological role of FceRI is their expression on

APCs such as dendritic cells and monocytes [75]. FceRI is

expressed as ac2 form on the APCs. It is known that the ac2

structure may assist in targeting antigen-IgE-FceRI com-

plexes to the intracellular antigen-presenting compartment.

The IgE-dependent type of antigen presentation will make

sure that it will only amplify the immune responses, which

were already mediated by IgE. This type of antigen pre-

sentation can mediate cytokine production from APCs and

thus, helps to modulate allergic inflammation [20, 25].

Activation of mast cells and release of mediators

The mediators released by the mast cells can be catego-

rized into three main groups: preformed granule content,

membrane derived lipid mediators, and cytokines [76–78].

Figure 2 shows the schematic representation of major types

of mediators released by the mast cells. Histamine is the

most clinically evident preformed granule mediators

responsible for the acute symptoms. Histamine is shown to

be associated with immediate type I hypersensitivity

reactions [79]. The level of histamine that is produced and

stored in mast cells is roughly 1 or 2 pg/cell. Histamine

receptors are further classified into H1, H2, and H3. H1

receptor stimulation results in bronchial smooth muscle

contraction, increased vascular permeability, nasal mucus

secretion, and increased neutrophil and eosinophil che-

mokinesis and chemotaxis. On the other hand, H2 receptor

stimulation results in ventricular and atrial contraction,

gastric acid production, airway mucus secretion, and vas-

cular permeability as well as inhibition of basophil

histamine release. Finally, H3 receptors, which are found to

be in neurons and peripheral tissues, regulate the secretion

and synthesis of histamine.

Membrane-derived lipid mediators and cytokines are

synthesized upon activation of mast cells. Prostaglandin D2

(PGD2) is the key arachidonic acid (AA) lipid metabolite

released upon mast cell activation. PGD2 is synthesized

from AA by the cyclooxygenase pathway and is respon-

sible for causing bronchospasm, hypotension, and

inhibition of platelet aggregation. PGD2 is roughly over 30

times more potent than histamine, especially in causing

bronchoconstriction. Leukotrienes are slow-responding

substances of anaphylaxis. Leukotrienes—LTB4, LTC4,

LTD4, and LTE4 are synthesized from AA through the

lipoxygenase pathway. Leukotrienes have been shown to

be linked in increased vascular permeability, increased

mucous gland production and cholinergic-independent

bronchospasm. Leukotrienes have a slow onset but are

10–1,000 times added potent, compared to histamine in

developing bronchoconstriction when dispensed by aerosol

[80]. The other most potent compound and unstored

phospholipid is platelet-activating factor (PAF). PAFs are

known to cause aggregation of human platelets and release

of platelet-derived vasoactive mediators. PAF has been

implicated with anaphylaxis, including pulmonary edema

and coronary vasoconstriction [81, 82]. Studies show that

the blockade of PAF with inhibitors result in improved

cardiac function, suggesting a key role for PAF in cardiac

dysfunction [83]. Furthermore, TNF-a is a major cytokine

that is in both stored as well as synthesized forms [84]. It

over-expresses cell adhesion molecules, increases bron-

chial responsiveness, and also possesses antitumor effects.

Other cytokines produced by mast cells include IL-1, IL-3,

IL-4, IL-5, IL-6, and IL-8 [39].

Mast cells in acute and chronic allergic reactions

Mast cells play a central role in the initiation and

development of atopic allergic reactions. The intracellular

signaling events have been broadly studied on mast cells

not only to know their physiological roles but also to find

potential therapeutic targets. Type I hypersensitivity is

the fundamental of acute allergic conditions [85]. It is

stimulated by molecules released by mast cells when an

allergen or antigen cross-react with membrane-bound

IgE.

Allergic conditions broadly consist of two phases: sen-

sitization and elicitation phase [86]. In the self,

sensitization occurs upon the initial exposure to an allergen

or antigen. Dendritic cells and macrophages are the first

line of defense against antigens through phagocytosis and

cell-mediated uptake of antigens. The antigen is degraded

by the antigen-processing pathway and subsequently
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presented as a component of the MHC class II complexes

[87]. Then the mature dendritic cells stimulate naive T cells

to differentiate into either TH1- or TH2-type CD4? T cells

[88], which aids in the maturation of B-cells to IgE

secreting plasma cells. FceRI aggregation triggers the

release of pre-formed mediators, production of lipid

mediators and cytokines. In an atopic condition, exposure

of the nose, skin, or airway to an initial dose of allergen

triggers a cutaneous reaction, results runny nose, sneezing,

and wheezing in minutes. In case of asthma, these media-

tors develop acute reactions, including mucus production

and smooth muscle contraction. This depends upon the

type I immediate allergic reactions and subsequently fol-

lowed by a chronic allergic reaction, which peaks 6 to 9 h

post-initial exposure [89]. The cellular pathways leading to

acute and chronic allergic reactions are shown in Fig. 3.

A TH2 response has been observed in an atopic condi-

tion and IgE production will result in binding with FceRI

on the effector cell. This will in turn increase the efficacy

during re-exposure to the same allergen [90–92]. During

the late-phase reaction of the skin, neutrophils and eosin-

ophils accumulate, followed by CD4? T cells and

basophils that infiltrate to the site of inflammation [93].

The late-phase asthmatic condition also shares a similar

pattern of cellular infiltration [94–96]. However, basophils

are not mainly infiltrated into the lower airways [97, 98].

Studies also show that further amplifications of chronic

allergic reactions may be mediated by histamine-releasing

factors [99, 100]. Cross-linking of mast-cell-bound IgE

with an antibody against IgE elicits both type I and late-

phase reactions [101–104]. The immediate and delayed

phases of bronchial hypersensitivity are initiated by mast

cells are shown in both humans, as well as in mouse models

of asthma [105, 106]. It has been reported that mast cells

may also be associated with regulating the early stages of

autoimmunity, especially in [107–109] diseases where

auto-antibodies play a vital role [110].

High-throughput functional genomics paradigm

The latest developments of functional genomics tools, such

as genome-wide transcriptomic analysis have revolution-

ized the approaches to answer complex scientific problems.

Fig. 2 The key mediators of

FceRI/Mast cell axis in allergy

and anaphylaxis. The schematic

representation illustrates some

of the key mediators released by

the mast cells upon stimulation

during allergy and anaphylaxis.

The mediators released by the

mast cells can be categorized

into three main groups:

preformed granule content,

membrane-derived lipid

mediators, and cytokines
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Several groups have carried out low, medium, and high-

throughput transcriptomic analysis of mast cell-mediated

expression profiling, furnishing some novel pathogenic

mechanisms of mast cell-mediated allergic responses.

Table 1 shows various gene expression studies carried out

on mast cells. The impact of these studies confirms that the

mast cell stimulation and activation seem to be associated

with number of pathologies including allergy and other

Fig. 3 The cellular pathways leading to acute and chronic allergic

reactions. The binding of allergen with IgE/FceRI complex on mast

cells triggers the release of pre-formed mediators, production of lipid

mediators, and cytokines leading to acute allergic conditions. Allergic

conditions broadly consist of two phases: sensitization and elicitation

phase. In the self, sensitization occurs upon the initial exposure to an

allergen or antigen. Dendritic cells and macrophages are the first line

of defense against antigens through phagocytosis and cell-mediated

uptake of antigens. The antigen is subsequently degraded as a

component of the MHC class II complexes. Then the mature dendritic

cells stimulate naive T cells to differentiate into either TH1- or

TH2-type CD4? T cells, which aids in the maturation of B-cells to

IgE-secreting plasma cells. Chronic allergic reactions, including the

late-phase reaction, may rely on a combination of events and the

release of mast-cell products by histamine-releasing factors from

T-helper cells

Table 1 Overview of gene expression studies performed using mast cell lines and primary mast cells

Study Source Stimulation Platform No. of genes

[116] HUCBMCs No stimuli RT-PCR 32 genes

[117] HUCBMCs No stimuli SAGE, RT-PCR 9,000 tags- SAGE

[118] Human PBMNC-MCs IgE ? Anti IgE ELISA, RT-PCR Cytokines and chemokines

[119] HUCBMCs, eosinophils, neutrophils and PBMNC No stimuli ONT array 6,000 probes

[120] RBL-2H3 IgE ? DNP ONT array 8,799 probes

[121] BM-mouse MCs IgE ? DNP ELISA Cytokines

[122] Human lung MCs TLR4 QPCR, ELSIA Cytokines

[123] Human Skin MCs IgE or PMA ELISA, RT-PCR Cytokines

[124] HUCBMCs IgE ELISA IL-8 & MCP-1

[115] HUCBMCs IgE ONT array 8,763 probes

The above evidence table depicts the authors of the study, source of mast cells used, stimulation method for activation of mast cells, platforms

used for gene expression profiling, and number of genes screened.

MC mast cell, HUCBMCs human umbilical cord blood-derived mast cells, PBMNC peripheral blood mononuclear cell culture, RBL-2H3 rat

basophilic leukemia cells
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immune/inflammatory conditions. A number of studies on

immune/inflammatory response show the usefulness of

transcriptomic analysis to understand the underlying

molecular mechanisms [11, 111–114]. With transcriptomic

analysis coupled with stringent statistical measures, we

show the genome-wide expression patterns of differenti-

ated human mast cells stimulated by IgE sensitization, and

FceRI aggregation at different time points. In our earlier

study, we have elucidated the molecular events which the

differentiated human mast cells go through upon IgE sen-

sitization and after complete activation in a genome-wide

manner [115]. Generation of a wide-variety of cytokines

and chemokines upon IgE-sensitization and FceRI

aggregation on mast cells suggests that they could be the

key regulators of the immune response (Fig. 4). It may also

lead to the recruitment and activation of other effector cells

to the site of inflammation, which may further enhance the

progression of immune response [115].

FceRI/mast cell axis: pathway analysis of differentially

expressed genes

Representation of specific inflammatory and immunoreg-

ulatory pathways among the differentially expressed genes

[115] was analyzed using Pathway Studio� software

Fig. 4 Gene expression pattern

in human mast cells following

IgE sensitization and FceRI

aggregation. The raw

Affymetrix GeneChip data was

downloaded from gene

expression omnibus (GSE1933)

and normalized with parametric

test based on cross gene error

model (PCGEM) and subjected

to one-way ANOVA and

Bonferroni-Hochberg FDR

(p \ 0.05) using Genespring 7.3

The differentially expressed

genes by the IgE sensitization

and FceRI cross-linking for

different time points (2, 6, and

12 h) were then classified and

clustered based on gene

ontology (GO). Analysis to

decode the differentially

expressed genes implicated in

biological processes such as

a cytokines and cytokine

receptors, b chemokines and

chemokine receptors, c other

immunoregulatory genes, d cell

proliferation and apoptosis,

e adhesion and cytoskeleton

remodeling, f transcription

factors and regulators, g signal

transduction, and h other genes

[115]
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(Ariadne Genomics, Rockville, MD) version 6.0. The

software uses information available in the current literature

to identify common pathways, targets, or regulators that are

associated with the altered genes to generate biological

interaction networks. Microarray expression data was

imported into Pathway Studio� to graphically represent all

known relationships and potential interactions between the

differentially expressed genes. Pathway Studio software

was used to identify a possible gene network that is dif-

ferentially regulated in the mast cell-mediated classical

pathway. Genes were linked to each other based on the

published literature (Fig. 5).

Concluding remarks

Allergy and anaphylaxis comprise a wide spectrum of

pathologies associated with the inappropriate activation of

the immune system by environmental antigens [125].

Allergic responses to foods, insect bites, oral and injected

Fig. 5 Molecular pathways

triggered through FceRI/mast

cell axis. Representation of

specific inflammatory and

immunoregulatory pathways

among the differentially

expressed genes triggered

through FceRI/mast cell axis

was analyzed using Pathway

Studio� software (Ariadne

Genomics, Rockville, MD)

version 6.0. The software uses

information available in the

current literature to identify

common pathways, targets, or

regulators that are associated

with the altered genes to

generate biological interaction

networks. Genes were linked to

each other based on the

published literature
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medications, and other agents, remain huge problems, and

are constantly increasing in society [125, 126]. Impor-

tantly, the FceRI/mast cell axis is central to these immune

reactions, and provides an attractive target for the inhibi-

tion of all IgE-mediated allergic diseases. Moreover, the

modulation of this central axis has long been considered as

a therapeutic strategy for various allergic disorders [50,

127]. Interestingly, clinical studies of allergic individuals

using anti-IgE monoclonal antibody therapy have shown

that the exploitation of this key axis is an effective

approach to disease treatment [128, 129].

In addition, mast cells play a major role in the patho-

genesis of inflammatory diseases such as asthma, atopic

dermatitis, psoriasis, and interstitial cystitis, as well as a

minor role in irritable bowel syndrome (IBS), inflammatory

bowel disease (IBD), rheumatoid arthritis (RA), coronary

artery disease (CAD), obesity, multiple sclerosis, and

cancer [3, 4, 130]. As a result, the critical dissection of

differentially expressed genes triggered through the FceRI/

mast cell axis and extensive exploration of their regulatory

pathways through advancing high-throughput technologies,

may allow us to selectively regulate these processes and

help in the development of therapeutic modalities to

potentially control and manage the exaggerated immune/

inflammatory responses in allergy and anaphylaxis in the

near future.
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