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ABSTRACT

Motivation: Drosophila melanogaster is a major model organism for

investigating the function and interconnection of animal genes in the

earliest stages of embryogenesis. Today, images capturing Drosophila

gene expression patterns are being produced at a higher throughput

than ever before. The analysis of spatial patterns of gene expression is

most biologically meaningful when images from a similar time point

during development are compared. Thus, the critical first step is to

determine the developmental stage of an embryo. This information is

also needed to observe and analyze expression changes over devel-

opmental time. Currently, developmental stages (time) of embryos in

images capturing spatial expression pattern are annotated manually,

which is time- and labor-intensive. Embryos are often designated into

stage ranges, making the information on developmental time course.

This makes downstream analyses inefficient and biological interpret-

ations of similarities and differences in spatial expression patterns

challenging, particularly when using automated tools for analyzing ex-

pression patterns of large number of images.

Results: Here, we present a new computational approach to annotate

developmental stage for Drosophila embryos in the gene expression

images. In an analysis of 3724 images, the new approach shows high

accuracy in predicting the developmental stage correctly (79%). In

addition, it provides a stage score that enables one to more finely an-

notate each embryo so that they are divided into early and late periods

of development within standard stage demarcations. Stage scores for

all images containing expression patterns of the same gene enable a

direct way to view expression changes over developmental time for any

gene. We show that the genomewide-expression-maps generated

using images from embryos in refined stages illuminate global gene

activities and changes much better, and more refined stage annota-

tions improve our ability to better interpret results when expression

pattern matches are discovered between genes.

Availability and implementation: The software package is available

for download at: http://www.public.asu.edu/*jye02/Software/Fly-

Project/.
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1 INTRODUCTION

Increasingly higher throughput bio-imaging technologies are

enabling scientists to capture the spatiotemporal patterns of

gene expression, which promises to generate a more comprehen-

sive picture of genome function and interaction (Cardona and

Tomancak, 2012; Peng et al., 2007; Walter et al., 2010; Yakoby

et al., 2008). Today, gene expression and protein localization

patterns are being captured with unprecedented spatial reso-

lution in numerous model organisms. For example, more than

one hundred thousand images of gene expression patterns from

early embryogenesis are available for Drosophila melanogaster

(fruit fly) (Lécuyer et al., 2007; Tomancak et al., 2002). These

images are a treasure trove for identifying co-expressed and co-

regulated genes and for tracing the changes in a gene’s expression

over time (Lécuyer et al., 2007; Tomancak et al., 2002).

Knowledge gained from analyses of these Drosophila expression

patterns is widely important because a large number of genes

involved in fruit fly development are commonly found in

animal kingdom (Levine and Davidson, 2005; Simpson, 2002;

Weiss, 2005). Consequently, many of the inferences made from

studies of fruit flies have been shown to apply to humans and

other species (Chen and Crowther, 2012; Kumar, 2001; Levine

and Davidson, 2005; Miller et al., 2013; Simpson, 2002; Weiss,

2005; Williams et al., 2012). Overall, research efforts into the

spatial and temporal characteristics of gene expression patterns

of Drosophila have been at the leading edge of scientific investi-

gations into the fundamental principles of animal development

(Kalinka et al., 2010; Konikoff et al., 2012; Osterfield et al., 2013;

Tomancak et al., 2002; Walter et al., 2010).
The comparative analysis of gene expression patterns is most

biologically meaningful when images from a similar time point

are compared (Campos-Ortega and Hartenstein, 1997). Based on

morphological landmarks, the continuous process of Drosophila

embryogenesis is traditionally divided into a series of Stages (1, 2,

� � �, 17) (Kumar et al., 2002). However, the standard practice of

manually inspecting images containing spatial patterns is a rate-

limiting step, especially when it has to be done for large number*To whom correspondence should be addressed.
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of images produced by high-throughput techniques. Images gen-

erated in some high-throughput experiments are currently given

stage range assignments (e.g. 4–6) rather than individual stages

(Fig. 1). As the original developmental stage delineations are

based on major morphological events in the fruit fly develop-

ment, it is, in principle, possible to distinguish embryos in images

at the level of individual stages (Ji et al., 2008; Ye et al., 2006,

2008). However, previous methods (Cai et al., 2012; Meng and

Shyu, 2011) only predict stage ranges, and no methods currently

exist to provide specific stage annotations for Drosophila em-

bryos. Furthermore, no approach currently exists to annotate

developmental stage for an embryo on a continuous numerical

basis, which would be more biologically realistic because devel-

opment is a continuous process that is reflected in the output of

the high-throughput experiments. Visually, it is possible to scan a

set of embryonic expressions and arrange them into a progres-

sion of gene expression, which informs us about the change and

direction of spatial expression over time. This indicates need for

a system that has the ability to assign more finely graded stage

information that enables one to conduct biological discovery

using images with higher resolution of stage similarity. In this

article, we report one such computational system and show how

it enhances visualization and scientific discovery.

2 MATERIALS AND METHODS

To develop an automated annotation system, we began by building a

comprehensive training set, in which development experts identified

images that were exemplar for each developmental stage defined in

(Campos-Ortega and Hartenstein, 1997). This constituted our initial

training/testing set and contained 3724 images (all in lateral view) such

that there were 4200 images for each stage considered (Table 1). We

applied machine learning (Bishop et al., 2006) to develop a pool of

1050 classification models to discriminate among stages. For any

image, all 1050 models are applied to generate a stage prediction,

which produces the voting histogram (Fig. 2). This histogram is used to

generate estimates of embryo stage annotation at various levels of granu-

larity. In the simplest case, we classify an embryo to be of stage S if a

majority of models designated the image to be in Stage S. For example,

Stage 10 gets the highest number of votes, and thus it is assigned to the

embryo in the image under consideration (Fig. 2). This histogram also

shows that the number of votes for Stage 9 is higher than that for Stage

11, which enables a finer stage designation (early Stage 10, 10E) for this

embryo. We also generate a stage score (SS) using the frequencies in the

voting histogram to incorporate non-symmetry of the distribution and

relative size of the most frequent peaks. For the example in Figure 2,

SS ¼ 6:8. These stage scores can be used to order images based on em-

bryonic developmental time or produce finer grade stage annotations.

The rest of this section is organized as follows. In Section 2.1, we

discuss the training set we built as ‘ground truth’ for our system. We

then present the various machine learning methods used to create a big

pool of models in Section 2.2. Finally, we introduce the annotation of

previously unseen images in Section 2.3.

2.1 Training set acquisition

To develop an automated annotation system, a key component is to build

a comprehensive training set, in which each entity (in our case, images of

gene expression in Drosophila embryo) is associated with the ‘accurate’

annotation (in our case, the corresponding stage). By learning from the

training set, a system will extract critical information from the images that

discriminates the developmental stages from each other and uses the ex-

tracted knowledge to build classifiers for predicting the stage of previ-

ously unseen images. We have manually annotated a collection of images

with precise stage labels for 3724 standardized Berkeley Drosophila

Genome Project (BDGP) images (in lateral view) in FlyExpress. The de-

tailed numbers of labeled images are listed in Table 1. Embryogenesis in

Drosophila starts with 13 rapid nuclear divisions after fertilization. Thus,

the only morphological difference across the first stage range (Stages 1–3)

is the number of nuclei, a feature not visible with the microscopy used by

the BDGP consortium. Therefore, they are considered as a single stage

(Stage 3) in this work. The alignment and orientation of all images in this

study are standardized using a semi-automated pipeline, and the size is

scaled to 128 by 320 pixels (Konikoff et al., 2012).

2.2 Model pool construction

The key of a successful voting system is to build a pool of diverse clas-

sification models, each with reasonably good performance. In this sec-

tion, we will first introduce the feature extraction process and then

present different ways of building classification models by using the

underlying structure of the features.

Fig. 1. Sample images from the BDGP. It has the largest collection of images for early as well as late stages. The images in BDGP are grouped into six

stage ranges: 1–3, 4–6, 7–8, 9–10, 11–12 and 13–17 (Tomancak et al., 2002, 2007)

Table 1. Number of annotated BDGP images for each developmental

stage

Stage No. of images Stage No. of images

1–3 250 11 246

4 251 12 255

5 274 13 251

6 224 14 252

7 236 15 232

8 260 16 243

9 248 17 254

10 248 Total 3724

This collection of images is manually annotated with precise stage labels. The orien-

tation of all images in this study is standardized, and the size is scaled to 128 by 320

pixels.
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2.2.1 Feature construction To make images from different stages

easier for computational models to distinguish, appropriate feature ex-

traction is critical. Log Gabor filters (Daugman, 1980; Field, 1987) have

been shown to offer the best simultaneous localization of spatial and

frequency information with an arbitrary bandwidth. They are particularly

suitable for our study, as the features distinguishing between different

stages should focus on the general morphology of the embryo as well

as subtle textures. In the frequency domain, the log Gabor function with

respect to radius (r) and angle (�) can be described by:

G r, �ð Þ ¼ exp �
log r=f0ð Þð Þ

2

2�2r

� �
exp �

� � �0ð Þ
2

2�2�

� �

where f0 is the filter’s center frequency, �0 is the filter’s orientation and �r
and �� are the corresponding standard deviations. By choosing different

values of f0 and �0, one can construct filters with different wavelet scales

and orientations.

The procedure of our feature construction is illustrated in Figure 3.

First, we converted the color image to gray scale. We then used log Gabor

filters with four different wavelet scales and six different filter orientations

to extract the texture information. Hence, 24 Gabor images were ob-

tained from the filtering operation. Next, we divided each of the Gabor

images into 640 sub-blocks of size 8 by 8, and the mean values were used

to represent each of the sub-blocks. The 24 sub-sampled Gabor images

were then converted to vectors, which were concatenated together as the

feature vector for the original image. Thus, the dimension of the final

feature vector is 24� 640 ¼ 1530.

2.2.2 Preliminary on linear classifiers The feature construction

step maps the images into a feature space, with each dimension corre-

sponding to a specific Gabor feature. We can then denote the training set

as D ¼ X,Ygf , where X ¼ fx1, . . . , xng is the feature vector of the anno-

tated images, Y ¼ y1, :::, yn
��
is the corresponding stage and n is the

number of training samples. In our study, we apply linear classifiers on

this high-dimensional classification problem, and apply the one-versus-

the-rest (Bishop et al., 2006) method to convert the multiclass classifica-

tion problem into a series of binary class problems. Therefore, only

binary linear classifiers will be discussed in the rest of this section.

Specifically, a binary linear classifier takes the linear combination of

the feature vector x of a sample to make the prediction:

y ¼ sgn wTx
� �

, ð1Þ

where y 2 �1, 1gf is the decision or the predicted ‘label’ of x 2 Rd,w 2 Rd

is the weight vector of the classifier that needs to be learned from the

training data, and sgn �ð Þ is the sign function.

Learning a linear classifier is to pursuit the optimal weight vector w on

the training set, which can be formulated as the following optimization

problem:

w� ¼ argmin
w

‘ðw,X,YÞ þRegðwÞ, ð2Þ

where ‘ðw,X,YÞ is the loss function measuring the discrepancy between

the prediction and the ground truth for the training samples, and RegðwÞ

is a regularization term designed to improve the generalization perfor-

mance of the classifier. The regularization term can be used to impose

specific structures on the weight vector; and it will be discussed in detail in

the following subsection. Three common loss functions are used in this

study:

� Least square loss (Bishop et al., 2006; Hastie et al., 2009) (e.g. ridge

regression):

‘ðw,X,YÞ ¼
1

2

Xn
i¼1

wTxi � yi
� �2

� Logistic loss (Bishop et al., 2006; Hastie et al., 2009) (e.g. logistic

regression):

‘ðw,X,YÞ ¼
Xn
i¼1

log 1þ exp �yiw
Txi

� �� �

� Hinge loss (Bishop et al., 2006; Vapnik, 2000) (e.g. support vector

machine or SVM):

‘ðw,X,YÞ ¼
Xn
i¼1

max 0, 1� yiw
Txi

� �

Fig. 2. Overview of our stage annotation system. By learning from a training dataset with manually labeled stage information, we build a pool of 1050

classification models. We then apply this pool to the unlabeled images in our FlyExpress database, providing a histogram of voting values for each image.

The histogram is then used to annotate the image with a specific stage, as well as a more refined ‘sub-stage’ and numerical-based ‘stage score’

Fig. 3. Illustration of the feature extraction process. The standardized

image is first processed by a series of log-Gabor filters, resulting in 24

Gabor images. These Gabor images are then down-sampled and conca-

tenated into a single feature vector, which is the final representation of the

original image. As indicated by the cross in the figure, one sub-block of

the original image corresponds to 24 features in the feature vector, one for

each Gabor image

268

L.Yuan et al.

 at K
ing A

bdulaziz U
niversity on A

pril 12, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

f
In order t
since 
,
4 
6 
p
are 
s
are 
s
,
-
,
``
''
l(w,X,Y)
Reg(w)
-
,
http://bioinformatics.oxfordjournals.org/


2.2.3 Exploiting the underlying sparse structure For high-

dimensional small sample size problems such as the one in our study,

RegðwÞ in Equation (2) plays a critical role in alleviating over-fitting and

improving generalization performance. A common choice (e.g. in ridge

regression and SVM) of the regularization term is: RegðwÞ ¼ �
2 wk k2.

An alternative way of addressing the high-dimensional problem is

feature selection. In the rest of this subsection, we will discuss 3 variants

of sparsity-inducing regularizations (‘1 norm, ‘2, 1 norm and ‘2, 1 � ‘1
norm) that can impose different types of sparsity patterns on the solution

of Equation (2) and lead to simultaneous classification and feature

selection (Ye and Liu, 2012).

From Equation (1), one characteristic of a linear classifier is that if we

set a certain entry of w to be 0, it is equivalent to removing the corre-

sponding feature. This motivates us to introduce the ‘1 regularization

(Tibshirani, 1996):

RegðwÞ ¼ �
Xd
j¼1

wj

�� �� ¼ � wk k1:

The ‘1 regularization (also called Lasso) performs feature selection and

classification in a unified formulation. It has been applied successfully in

various applications (Liu et al., 2009). However, Lasso does not make full

use of the underlying structure of our data. Specifically, as shown in our

feature extraction process illustrated in Figure 3, each region of the image

is associated with 24 features, one for each of the 24 different log-Gabor

filters. Thus, the features can be naturally partitioned into distinct groups,

one for each region of the image. It is then natural to apply group Lasso

(Yuan and Lin, 2006), which can be applied to select feature groups, i.e.

image regions. Assume that we partition the index of the features into S

disjoint groups fG1, . . . ,GSg, one for each region, such that

G1 [ G2 [ � � � [ GS ¼ f1, 2, . . . , dg. We can then obtain the ‘2, 1 norm

(also called group Lasso) regularization as follows:

RegðwÞ ¼ �
XS
i¼1

wGi
		 		

2
,

where wGi is the weight vector restricted to the i-th group of features, and

� is the parameter that controls the group sparsity.

When we use the ‘2, 1 norm regularization to perform feature selection,

all features from the same group will be selected simultaneously. Thus,

only the ‘between-group sparsity’ is considered. However, some features

from a selected group may be irrelevant to our prediction. In this case, the

‘2, 1 � ‘1 norm regularization (called sparse group Lasso) (Friedman

et al., 2010; Liu and Ye, 2010) can be applied, which simultaneously

achieves the ‘between-group’ sparsity based on the ‘2, 1 norm and the

‘within-group’ sparsity based on the ‘1 norm as follows:

RegðwÞ ¼ �1 wk k1þ�2
XS
i¼1

wGi
		 		

2
:

2.2.4 Constructing a pool of diverse classifiers The key idea of a

successful voting system is to have a large and diverse pool of models,

each of them with reasonable prediction power. In this study, we applied

SVM with linear kernels from the LIBLINEAR (Fan et al., 2008)

package and six sparse learning algorithms (Lasso, group Lasso and

sparse group Lasso with least square and logistic loss) from the SLEP

(Liu et al., 2009) package. We then partition the annotated dataset into

two disjoint sets, namely, the ‘training set’ where linear classifiers are

learned and the ‘validation set’ where the performance of the learned

classifiers can be evaluated. Five different training set ratios (from 50

to 90%) are used to partition the dataset and for each ratio, 30

random partitions are generated. Each combination of classification algo-

rithm and training set partition results in a distinct classification model.

In terms of classification algorithms, we find that all seven algorithms

perform comparably with the three sparse learning methods using logistic

loss achieving slightly better performance. The best cross-validation accu-

racy is 79.82� 1.67%, which is achieved by sparse logistic regression with

logistic loss and 90% of data as training. For our 15-class (Stages 3–17)

classification problem, an accuracy of 80% is reasonably good. We also

find that the validation accuracy generally increases as more samples are

used in training, but the increase is not that significant after 70% of the

annotated data (about 2600 images) are used for training. This indicates

that the annotated dataset has an adequate size.

In addition to obtaining a collection of ‘reasonable’ models, we also

need the models to be diverse such that the majority voting of the pool

will provide robust results for unseen subjects. We calculate the average

rate that at least one of the algorithms does not agree with the others, and

find that the disagreement rate varies from 30 to 20% as the training ratio

increases (refer to Supplementary Materials for detailed results on indi-

vidual classifier performance as well as disagreement rate). Therefore, we

have built a pool of 1050 (7 algorithms times, 5 training ratios times, 30

random partitions) diverse models, each of which achieves reasonably

good classification performance.

2.3 Voting for stage annotation and beyond

In this subsection, we will discuss in detail the voting scheme we designed

for annotating the remaining BDGP images in our FlyExpress database.

2.3.1 Stage annotation by majority voting For a given unlabeled

image, we denote the prediction vector for this image based on the i-th

model as yi 2 f0, 1g15, where yi is a 15D binary vector indicating the stage

prediction of the i-th model. Specifically, yi½j� ¼ 1 indicates that the i-th

model determines that this image belongs to the j-th stage. We also assign

a ‘confidence level’ of the current model as ai, which is set to be the

classification accuracy of this model on the validation set. We then sum-

marize all the predictions from the 1050 models and obtain a prediction

histogram defined as h ¼
P1050

i¼1 aiyi. Then, the entry with the highest

voting will be the stage assigned by the ensemble of the pool of

models. That is, the final annotation is defined as S ¼ argmaxi h i½ �.

2.3.2 Sub-stage annotation and decimal-based embryo
ordering To illustrate our method of refining stage annotation to

sub-stages and the decimal-based embryo ordering scheme, we first pro-

vide an example of the prediction histogram for a specific image in

Figure 2. In our current system, only images assigned to Stages 4–16

have refined stage annotation.

As expected, Stage 10 gets the most votes among all 15 stages, and

therefore this image will be annotated as Stage 10. We then compare the

voting scores for the two adjacent Stages 9 and 11 and observe that

h 9½ �4h 11½ �. Therefore, according to our system, this Stage 10 image is

more similar to Stage 9 compared with Stage 11. Thus, we will annotate

this image as Stage 10E (early 10).

In addition to the order information of the prediction histogram, we

can assign a continuous stage value for the image. Using Figure 2 as an

example, we calculate the ‘stage score’ for this image as:

SS ¼ 10�
h 9½ �

h 9½ � þ h 10½ �

The intuition is as follows: the higher value of h½9� with respect to h½10� is,

the ‘earlier’ this embryo is among all the Stage 10E images. This decimal

stage value can only be used to suggest a relative order within each sub-

stage. For example, in terms of developmental time, a Stage 7.9 image is

not necessarily closer to Stage 8 than a Stage 6.7 image is to Stage 7.

With the help of the embryo ordering scheme, we can obtain even

more refined stages. For example, we can further divide Stage 10E into

three sub-sub-stages as follows: first, we sort all the decimal stage values

of all the images assigned to Stage 10E. We then evenly split the sorted

images into three groups, with the first group annotated as Stage 10E-a,

second as 10E-b and third as 10E-c.
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3 RESULTS AND DISCUSSION

We estimated the cross-validation performance of the annota-

tion system in correctly assigning a specific stage (S) for the

3724 annotated images first. This produced an accuracy

of 79%, with the highest accuracy observed for Stage 7

(89%) and the lowest accuracy for Stage 10 (44%). This may

attribute to the fact that the differences between Stages 9 and

10 are small as they correspond to the slow phase of germ band

movement.

For evaluating the performance of our method on independent

data at a large scale, we generated the annotation S for 36 802

images (lateral views) obtained from the FlyExpress database

(Kumar et al., 2011). A stage assignment was deemed to be

correct if S was within the stage range provided by the source

BDGP (Tomancak et al., 2002, 2007). That is, if an image was

annotated as Stage 7 by our system (S¼ 7) and BDGP annotated

it as stage range 7–8, then the annotation was considered to be

correct. In this case, the accuracy of our annotations was 86.6%,

with the highest accuracy seen for stage range 4–6 (96.9%) and

the lowest for stage range 9–10 (74.9%). Visual inspection of

mistakes revealed that a handful of images were not lateral

views. Cai et al. (2012) reported an 85.2% cross-validation accu-

racy using 5414 images, whereas Ye et al. (2008) achieved 87.8%

for just the 3 early stage ranges. Compared with previous results,

our system is accurate in terms of predicting the stage ranges for

all 36 802 images.
We also performed another independent evaluation by ran-

domly selecting 140 images from Stages 4–17. We asked a

domain expert to manually annotate these randomly selected

images with specific stages (S) and more refined stages [e.g.

Early Stage 10 (10E), late Stage 7 (7L)]. Of these, manual anno-

tations were not provided by experts for 23 images because they

were too out-of-focus to annotate or not lateral (mislabeled in

the database). For the remaining 117 images, computational and

manual annotations matched 81% of the times, which is similar

to the accuracy observed for the training set. At the level of

sub-stages, manual and computational annotations matched

73.5% of the time. Overall, we found that the computational

prediction is within one sub-stage of the expert developmental

biologists’ annotation for 93% of the images tested. Therefore,

the computational predictions can provide an excellent set of

initial annotations.

3.1 Improving similar expression pattern retrieval

Within the FlyExpress database, we provide a tool for identifying

similar gene expression patterns for a given query image (Kumar

et al., 2002). As the images in FlyExpress are assigned to a stage

range, the search can only be done within a particular stage

range. However, the comparison of gene expression is most bio-

logically meaningful when the embryos are from similar devel-

opmental time points, which means that the use of specific stage

would be useful to improving the interpretation of matches. We

present two example cases where the use of specific and refined

stages leads to better biological insights (Fig. 4). In Figure 4A, an

expression profile of srp gene from stage range 4–6 is used to

query for the best matching patterns. It produces results from

many different genes within the same stage range. A view of

the specific stage enables one to quickly realize that the query

image was from Stage 6 and that many of the resulting

patterns are from earlier stages (e.g. 4 and 5). So, by incorporat-

ing specific stage information, the user would have received

results from Stage 6 only, which would have been more relevant.

A similar situation exists for the second case (Fig. 4B), where

the expression of Gasp from stage range 13–17 is used to

query the database. Results in this case show spurious overlaps

with many much earlier stage images (e.g. 13, 14), which

have been included simply because of rather coarse stage

annotations available. Therefore, we plan to provide users

with an option in FlyExpress to view results that potentially

represent the best matches that come from the closest predicted

stage.

Fig. 4. Examples of refining image retrieval results using stage annotation. Two example query images are used, with the left one (A) from the Kr gene

and right one (B) from Gasp. The top matches from the FlyExpress lateral BDGP images are listed, with corresponding pattern as well as similarity

values. The annotated stage from our system is presented on the left of each expression image
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3.2 Genomewide-expression-maps with refined stage

information

Using the predicted stage information for 36802 images (lateral

views) obtained from the FlyExpress database (Kumar et al.,

2011), we created genomewide-expression-maps (GEMs) that

are generated by aggregating and normalizing all spatial gene

expression patterns from the same stage (Konikoff et al., 2012;

Kumar et al., 2011). In Figure 5, we demonstrate how the use of

increasingly refined stage information makes the global views of

gene activities increasingly more informative. The results are

arranged from top to bottom for images classified by BDGP in

Stages 7–8, 9–10 and 11–12 (see Supplementary Materials for

other stage ranges). In Figure 5A, GEMS for stage range 7–8

lack the information that the germ band is initially more

posterior in position and moves toward the anterior, which is

easily revealed when images from stage range 7–8 are separated
into Stages 7 and 8. This trend is further illuminated when the

stages are further refined into early and late parts (Fig. 5C).
Comparing the Hartenstein (1993) images side by side with
these GEMs confirms this trend (Fig. 6). Increasingly more

refined trend is seen for Stages 9–10 and 11–12 as shown in
Figure 5 (top to bottom in the right column), such that one

quickly gets a sense of the developmental progression illuminated
by gene expression patterns. These results indicate that the auto-

mated stage annotations work well and that refined stages will
enable scientists to identify better sets of co-expressed genes.
We also predicted stage score for each image and then build

GEMs at an even higher resolution than those in Figure 5, which

Fig. 5. Stages 7–12 GEMs generated by using only the stage range information [(A), left column], the predicted stage information [(B), middle column]

and the sub-stage information [(C), right column]. The total number of images involved for creating each individual GEM is also reported
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shows how global gene activities vary over developmental time.
In our supplemental materials, we provide a short video made by

dividing each stage into 8 sub-sub-stages (‘BDGP_GEMs.avi’).

In addition to categorizing embryo images into finer sub-stages,

our stage score can help to sort all embryo images based on their

estimated developmental time (refer to Supplementary Materials

for more results on embryo sorting). This will add great func-
tionalities to our current FlyExpress database, and a preliminary

version is already included in our iPhone app (Kumar et al.,

2012).

3.3 More on model ensemble

In our final annotation system, all 1050 models are used to form

the ensemble. One interesting question to ask is: is it truly ben-
eficial to include all of them? In this subsection, we use the

aforementioned independent evaluation dataset to validate our

choice of large number of models.
First, we show that combining different classification algo-

rithms is essential for the success of model ensemble. We predict

the stages of the images from the evaluation set using the ensem-

ble of different subset of methods, and the results are summar-

ized in Table 2. Apart from the ensemble of all methods, we test

three other scenarios: SVM models alone, sparse models alone
and SVMmodels plus sparse models with logistic loss. Formally,

we define the criteria as follows:

� Sub-stage Accuracy (Acc0.5). Only the images that are anno-
tated with the correct sub-stage are considered accurate. For

example, if an ‘early stage 7’ image is annotated as Stage 7E

by our system, then the annotation is considered correct

� Stage Accuracy (AccStage). The images that are annotated

with the correct stage are considered accurate. For example,

if an ‘early stage 7’ image is annotated as Stage 7E or Stage

7L by our system, then the annotation is considered correct

� Plus-Minus-Sub-stage Accuracy (Acc�0.5). The images that
are annotated with a sub-stage which is at most ‘a sub-stage

away’ from the manually annotated sub-stage are consid-

ered accurate. For example, if an ‘early stage 7’ image is

annotated as Stage 6L, Stage 7E or Stage 7L by our

system, then the annotation is considered correct.

As we can see from Table 2, neither SVM models nor sparse

models yield competitive results, while the best performance is

achieved by combining all of them together. This is especially

true for the side-stage accuracy, where a large number of diverse
models are essential for accurately predicting if an image is from

the early or late part of a certain stage. Additional discussions

such as the effects of ensemble pruning (Zhou, 2012) can be
found in the Supplementary Materials.

CONCLUSION

In this article, we propose an automated system for the develop-
mental stage annotation of Drosophila embryo gene expression

images. A pool of 1050 classification models is constructed using
a variety of state-of-the-art sparse learning algorithms. Based on

this model pool, we design a voting scheme which not only pro-

duces accurate stage annotation but also a stage score for each
embryo. This stage score can be used to more finely annotate

each embryo into early and late periods of developmental stage.
We use this system to annotate 36 802 images (lateral view) from

the FlyExpress database, and show that the refined stage and
sub-stage annotations greatly improve our ability to view

global gene activities and to interpret matching expression pat-
terns. Our current system is designed for size and orientation

standardized images in the FlyExpress database. To extend our
system for annotating non-standardized images (e.g. disoriented

ones) will be an interesting future direction.
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